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a b s t r a c t

Computational requirements sometimes discourage using mathematical optimization for groundwater
management. To dramatically reduce computation time, the presented hybrid response matrix method
(RMM), Coefficient Generation and Use method 4 (CGU4), prepares surrogate simulators used during
optimization. CGU4 reduces numerical model simulations needed to populate the surrogates (linearized
convolution equations, LCEs). LCEs often represent flow and head constraints within groundwater flow
optimization problems. CGU4 reduces computations for problems having: varying time period sizes; eras
of sequential time periods of equal duration; and system (non)linearity. For a situation having: linear,
piece-wise, and nonlinear groundwater flows; 20 periods of varying and sequentially constant durations;
and optimization problems employing (non)linear objective functions and linear head and aquifer-
surface seepage constraints, CGU4 requires 22e61% fewer simulations to compute optimal objective
function values within 0.001e0.003% of the best alternative RMM. For hypothetical (non)linear dynamic
stream-aquifer problems, CGU4 required the same or 63e89% less time than previous RMMs.

© 2017 Published by Elsevier Ltd.

System availability

1.) Name of software or data set:
a. Simulation module: MODFLOW
b. Optimization module: GAMS
c. Simulation-Optimization model: Simulation-

Optimization Modeling System (SOMOS), SOMO1 mod-
ule (Early version of SOMO1 was known as REMAX).

2.) Developer:
a. SOMOS: Richard C. Peralta and contributors listed alpha-

betically: Alaa Aly, Yun Huang, Ineke M. Kalwij, Bassel
Timani, and Shengjun Wu.

b. Civil and Environmental Eng., 4110 Old Main Hill, Utah
State Univ., Logan, Utah, USA (peralta.rc@gmail.com),
(435) 797e2786; and Peralta and Associates, Inc. (435)
881-4947

3.) Software:

a. Program language: C#
b. Program size: 11MB excluding optimizer (GAMS)
c. Available since 2015
d. Hardware required: PC (not tested on MAC)
e. Software required:

i) Windows 7 (Various SOMOS versions have run under
Windows NT, 95, 2000, XP, Vista, Windows 7, Win-
dows 8, and Windows 10.)

ii) SOMO1 module of SOMOS;
iii) General Algebraic Modeling System (GAMS), available

from GAMS.COM. The free demonstration GAMS
version can solvemanuscript System I and II problems.
Solving manuscript System III problems requires pro-
fessional GAMS license.

4.) Availability for download and cost: SOMOS free demonstra-
tion version or professional version (different arrangement)
will be available from Richard Peralta, peralta.rc@gmail.com
after user's manual is ready for release.

5.) Data:
a. The simulation model data of the manuscript Systems III

problem is available at http://www.waterrights.utah.gov/
groundwater/gwmodelsview.asp#Cache.
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b. Form of repository: Files
c. Size of archive: 1.93 GB (input and detailed output)

1. Introduction

Strategic planning and decision-making rely heavily on simu-
lating the consequences of alternative scenarios (Greiner et al.,
2014). Stakeholders should participate in evaluating scenarios or
strategies and in developing natural resource and environmental
management plans (Argent and Grayson, 2003; Martínez-Santos
et al., 2010). Mathematical optimization is becoming increasingly
desirable for developing alternative management strategies
(Scholten et al., 2007; Maier et al., 2014). A management strategy
refers to a spatially and perhaps temporally distributed set of
groundwater pumping rates.

Mathematical optimization involves computing the optimal
solution for a specified optimization problem. An optimization
problem usually includes an objective function, decision variables
(DVs), state variables (SVs), upper and lower bounds on these
variables. The optimization problem must also include constraints
linking DVs and SVs and defining criteria that must be satisfied. The
optimizer computes the optimal set of DV values (a strategy) that
produces the best objective function value. The optimal strategy
also has to satisfy bounds (upper and lower limits) on variables and
constrained values. Whether the objective is a maximum value or a
minimum value depends upon the problem. Groundwater flow
optimization problem objective functions have many forms. Ex-
amples include maximizing or minimizing pumping, economic
benefit, cost, population, drawdown, or other descriptors. Common
groundwater DVs, also termed ‘instruments’ (Katic and Grafton,
2011), are rates of extraction from or injection into aquifers. Sam-
ple groundwater flowmodel SVs include aquifer head, stream head,
stream flow, stream-aquifer seepage, river-aquifer seepage, drain-
aquifer seepage, and evapotranspiration. Numerical constraints
employ DVs and SVs and represent physical laws, social, cultural,
economic, and environmental concerns or aspects, and stakeholder
preferences and discomforts.

A Simulation-Optimization (S-O) model couples one or more
simulation models with optimization algorithms to provide

management strategies that satisfy physical laws and management
preferences. Simulation models predict the future system state in
response to assumed management. To that capability, S-O models
add the ability (Refsgaard and Henriksen, 2004; Scholten et al.,
2004; Refsgaard et al., 2005; Henriksen et al., 2007) to design
optimal strategies that consider and satisfy constraints (Peralta and
Kowalski, 1988; Lemon, 1999; Parker et al., 2002; Oxley et al., 2004;
McIntosh et al., 2007). S-O models can address many problems,
including conjunctive and integrated water management (Jakeman
and Letcher, 2003; Bromley et al., 2005). Properly and carefully
formulated S-O models aid decision-making (Papathanasiou and
Kenward, 2014; Hall et al., 2014), planning, and preparing for
weather or climatic anomalies (Greiner et al., 2014). Engineers and
scientists more readily use S-O models when the models can
practicably handle large and complex management problems (El-
Swaify and Yakowitz, 1998; Argent and Grayson, 2003; Argent
et al., 2006; Housh et al., 2012). Yazdi and Salehi Neyshabouri
(2014) state that the large computational effort required for
groundwater pumping strategy optimization has impeded practical
S-O modeling use.

Groundwater flow S-O models predominantly use response
matrix methods (RMMs) to generate and use linear discretized
convolution (superposition) equations. For linear and nonlinear
aquifers, convolution equations are surrogate simulators when
employed in lieu of full finite numerical models (Wang et al., 2014)
to compute SV values resulting from DV values during the opti-
mization process. Razavi et al. (2012a, 2012b), and Yazdi and Salehi
Neyshabouri (2014) include such surrogate simulators under the
umbrella of ‘metamodeling’. The convolution equations employ the
multiplicative and additive properties of linear systems theory
(Maddock, 1974). These equations (Morel-Seytoux, 1975a;
Illangasekare and Morel-Seytoux, 1982; Peralta et al., 1991, 1992,
2011) are also termed Algebraic Technological Functions (Maddock,
1972, 1974; Psilovikos, 2006). The convolution equations include
summations of the products of selected pumping stimuli and linear
influence coefficients (ICs). A matrix containing all the coefficients
is termed a response matrix. A transient IC quantifies system
response at a particular time to a ‘unit’ stimulus of specified
magnitude occurring at a particular, possibly different time. To
create and use these equations, RMM employment involves the
separate phases of coefficient generation (abbreviated CG), and of
subsequent coefficient use or utilization (abbreviated CU) during
the optimization process.

For multi-period problems, S-O models that pair RMMs and
classical optimizers require less computational effort than alter-
native S-O model types (Peralta and Kalwij, 2012). For simulation,
the alternatives use embedded finite simulationmodels, embedded
flow equations, or statistical learning machines (such as Relevant
Vector Machines or Support Vector Machines). For optimization,
the alternatives use classical algorithms (e.g. simplex, branch and
bound, gradient search), or heuristic algorithms (such as genetic
algorithms, simulated annealing and tabu search).

Previously employed compatible RMMs, Coefficient Generation
and Utilization algorithms 1 and 2 (CGU1 and CGU2) are powerful,
but neither is perfect for all situations. CGU1 and CGU2 use
different: i) expressions to relate the time that a unit stimulus is
exerted to the time at which system response is observed or
computed, and ii) the form of the convolution equations. Software
using CGU1 and CGU2 that we are aware of also differ in how they
compute unit stimuli. CGU1 is attractive for situations in which the
physical system response to pumping is linear or mildly nonlinear,
but CGU1 requires that periods of pumping be of uniform duration.
A stress period is a period of uniform pumping.We use period, time
period, and stress period interchangeably in this manuscript.
System Simulation and Optimization Laboratory (SSOL) (2004 and

List of acronyms

ACE Aggregated Convolution Equation
CG Coefficient Generation
CU Coefficient Utilization
DV Decision Variable
FCL Flow Control Location
HCL Head Control Location
IC Influence Coefficient
MCIDV Maximum Change In Decision Variable Rates (in any

period between the last two cycles)
ME Management Era
OFV Objective Function Value
RMM Response Matrix Method
SG Scenario group
S-O Simulation-Optimization
SP Stress Period
SV State Variable
Τ last period of an ME
t 1st period of an ME
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