Environmental Modelling & Software 96 (2017) 347—360

Contents lists available at ScienceDirect

Environmental
Modelling & Software

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

pPRPL + pGTIOL: The marriage of a parallel processing library and a
parallel I/O library for big raster data

@ CrossMark

Jinli Miao *®, Qingfeng Guan * ", Shujian Hu * ¢

@ School of Information Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
b Development and Research Center, China Geological Survey, Beijing 100037, China
¢ National Engineering Research Center of GIS, China University of Geosciences, Wuhan, Hubei 430074, China

ARTICLE INFO ABSTRACT

Article history:

Received 13 August 2016
Received in revised form
2 April 2017

Accepted 19 June 2017

Data I/O has become a major bottleneck of computational performance of geospatial analysis and
modeling. In this study, a parallel GeoTIFF I/O library (pGTIOL) was developed. Through the storage
mapping and data arrangement techniques, pGTIOL can operate on files in either strip or tile storage
mode, read/write any sub-domain of data within the raster dataset. pGTIOL enables asynchronized 1/O,
which means a process can read/write its own sub-domains of data when necessary without synchro-
nizing with other processes. pGTIOL was integrated into the parallel raster processing library (pRPL).
Several pGTIOL-based data 1/O functions and options were added to pRPL, while the existing functions of

K :

R?S’tvgrds PRPL stay intact. Experiments showed that the integration of pRPL and pGTIOL achieved higher per-
Parallel computing formance than the original pRPL that uses GDAL as the 1/O interface. Therefore, pRPL + pGTIOL enables
Parallel 1/0 transparent parallelism for high-performance raster processing with the capability of true parallel I/O of

Programming library massive raster datasets.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

The software is still under test, but available for download at
https://github.com/HPSCIL/pRPL. The demonstration program (i.e.,
pAspect) can be compiled by following the instructions in README.

1. Introduction

In the Big Data era, massive volume of geospatial data is being
collected, generated, and accumulated at an unprecedentedly rapid
pace, partially attributed to the fast and wide adoption of location-
aware sensing technologies, such as satellite/aerial imaging sys-
tems, web cam, mobile phones, and various sensors. As results, a
number of large geospatial datasets with regional/global coverages
and high resolutions have been created, such as the 30-m ASTER
Global Digital Elevation Model (ASTER GDEM, Tachikawa et al.,
2011) and the 30-m Global Land Cover Dataset (GlobeLand30,
Chen et al., 2015). Meanwhile, many complicated spatial algorithms
and models have been developed in the last few years to analyze

* Corresponding author. School of Information Engineering, China University of
Geosciences, Wuhan, Hubei 430074, China.
E-mail address: guanqf@cug.edu.cn (Q. Guan).

http://dx.doi.org/10.1016/j.envsoft.2017.06.031
1364-8152/© 2017 Elsevier Ltd. All rights reserved.

and simulate complex geospatial relationships, interactions, and
dynamics. The increasing consciousness and interests of socio-
economic globalization and global climate change have stimu-
lated the use of regional/global geospatial datasets and complicated
spatial analytical and modeling techniques to deal with large-scale
problems and provides decision-making supports. However, the
extremely high data intensity and computational intensity often
demand for vast memory space and extensive computing time,
making such geospatial applications inefficient and unscalable,
sometimes even infeasible.

The last decade has seen a booming rise of studies and appli-
cations of high-performance computing (HPC) in geospatial
studies, such as land-use modeling (Li et al., 2010; Pijanowski et al.,
2014), terrain analysis (Qin and Zhan, 2012; Zhao et al., 2013), and
geostatistics (Guan et al., 2011; Shi and Ye, 2013). The recent de-
velopments of CyberGIS (Wang and Armstrong, 2009; Wang, 2010),
spatial cloud computing (Yang et al.,, 2011, 2013), and graphics
processing units (GPUs) also stimulate the deployment of parallel
computing in geospatial studies (e.g., Tang et al., 2011; Shook et al.,
2013; Huang et al., 2013; Liu et al., 2013; Zhang and You, 2013; Shi
and Ye, 2013), as they provide easy-to-access HPC facilities and
platforms.

Delta:1_given name
Delta:1_surname
Delta:1_given name
https://github.com/HPSCIL/pRPL
mailto:guanqf@cug.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2017.06.031&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2017.06.031
http://dx.doi.org/10.1016/j.envsoft.2017.06.031
http://dx.doi.org/10.1016/j.envsoft.2017.06.031

348 J. Miao et al. / Environmental Modelling & Software 96 (2017) 347—360

While parallel computing has been proved to be a promising
solution to the computational barrier induced by massive datasets
and complex algorithms, the complexity of developing parallel
applications remains high and has become one of the major ob-
stacles to the wide adoption of parallel computing in geospatial
studies. A few efforts have been made to reduce the development
complexity of parallel geospatial applications. Cheng et al. (2012)
developed a general-purpose optimization methods for the paral-
lelization of digital terrain analysis based on cellular automata,
which can also be used to parallelize other types of spatial analysis.
Qin et al. (2014) developed a set of parallel raster-based Geo-
Computation operators (PaRGO) for users to implement parallel
geospatial applications on three types of parallel computing plat-
forms: GPU supported by compute unified device architecture
(CUDA), Beowulf cluster supported by message passing interface
(MPI), and symmetrical multiprocessing cluster supported by MPI
and open multiprocessing. Shook et al. (2016) developed a parallel
cartographic modeling language (PCML), a domain-specific lan-
guage implemented in Python that is capable of automatically
executing an user-written script in parallel.

The parallel Raster Processing Library (pRPL) is an open-source,
general-purpose programming library designed to facilitate GIS
scientists and professionals to develop parallel geospatial applica-
tions with minimal knowledge and skills of parallel computing
(Guan, 2009; Guan and Clarke, 2010; Guan et al., 2014). By encap-
sulating the complex parallel computing details and providing
easy-to-use interfaces, pRPL enables transparent parallelism such
that users only need to focus on their own raster processing algo-
rithms, and are able to implement parallel applications just like
writing sequential programs. However, since pRPL was originally
designed to facilitate the development of parallel raster processing
procedures, data I/O was not one of the main focuses. pRPL 1.0 uses
a centralized I/O mechanism and only provides a primitive method
for reading and writing raster data in a specific ASCII format. pRPL
2.0 improves the I/O capability by incorporating the Geospatial
Data Abstraction Library (GDAL, http://www.gdal.org) as the /O
interface to support a large variety of raster formats. Besides the
centralized I/O mode, pRPL 2.0 also provides a pseudo parallel I/O
mode. Nevertheless, the pseudo parallel writing mechanism in
PRPL 2.0 generates multiple temporary files before combining them
into the final output dataset. Therefore it is not true parallel I/O and
the performance is sometimes even poorer than the centralized I/O
when writing a large quantity of data (Guan et al., 2014). Thus, a
true parallel I/O mechanism is needed to allow multiple subsets of
data to be read or written concurrently without any intermediate
files.

In this study, we developed a parallel raster data I/O library
(pGTIOL) that implements a true parallel I/O mechanism for the
GeoTIFF format, one of the most commonly used geospatial raster
formats. We also integrated pGTIOL with pRPL to improve the I/O
performance of pRPL. Several pGTIOL-based data I/O functions and
options were added to pRPL, while the existing functions of pRPL
stay intact. To examine the performance of the pRPL + pGTIOL
integration, a parallel program for calculating slope and aspect was
developed and a series of experiments were conducted. The results
showed that pGTIOL greatly helped improve the I/O performance,
and yielded better performance than the GDAL-based I/O methods
of the original pRPL.

The rest of this paper is organized as follows. Section 2 gives a
brief introduction to pRPL 2.0. Section 3 elaborates on pGTIOL,
including its design and implementation. Section 4 describes the
integration of pRPL and pGTIOL. Section 5 presents the demon-
stration application and experiments, as well as the performance
assessments. Conclusion is given in section 6.

2. pRPL 2.0

PRPL is a general-purpose programming library, specifically
designed for GIS scientists and professionals who lack of knowl-
edge and skills of parallel computing, to easily parallelize their own
application-specific raster-processing algorithms and models. pRPL
is based on the Message Passing Interface (MPI, Gropp et al., 1998)
and written in C++, both of which are supported by a wide range of
HPC architectures (e.g., computer clusters, massive parallel com-
puters, and desktop computers with multi-core CPUs). Therefore it
guarantees the portability of parallel applications across various
HPC systems. pRPL-based applications can also be deployed in
cloud computing environments, as long as a parallel computing
platform with multiple CPU cores can be virtualized.

The rest of this section gives a brief introduction of pRPL 2.0,
including its key components, features, and programming model.

2.1. Key components of pRPL

The most commonly used strategy for parallelizing raster-
processing algorithms is data parallelism, which divides a grid of
cells (i.e., domain) into multiple sub-grids (i.e., sub-domains) and
utilizes multiple computing units (e.g., CPUs or CPU cores) to apply
the same computational procedure on these sub-domains simul-
taneously (Fig. 1). Task parallelism, on the other hand, divides a task
into a set of sub-tasks and applies them on data concurrently.
Compared with task parallelism, data parallelism is easier to
implement and suited for a wide variety of raster operations,
including local, focal, zonal, and global ones, as long as the
computation on a sub-domain is independent from the computa-
tion on others. Note that computational independence does not
mean data independence. Some raster operations, while being
parallelizable, may need data from other sub-domains when
applied on a certain sub-domain. Typical examples are focal oper-
ations, also termed neighborhood-scope or moving-window oper-
ations. In order to provide general support for various user-defined
algorithms, pRPL was designed primarily based on the principles of
data parallelism. In other words, an application-specific algorithm
(termed Transition), as long as its computational procedure is par-
allelizable in a data parallelism manner, can be easily parallelized
using pRPL.

To construct a data parallelism framework for raster processing,
PRPL includes a hierarchy of data containers, i.e., Cellspace, Sub-
Cellspace, and Layer (Fig. 2). A data container includes a Cellspa-
celnfo attribute component indicating its dimensions (numbers of
rows and columns), data type, data size, and NoData value. Also, a
CellspaceGeoinfo attribute component is used to indicate the spatial
reference information, including the projection, cell size (in a
geospatial measurement unit), and geospatial coordinates of the
northwest corner.

The main purpose of data containers is to hold the data to be
processed. A Cellspace object, representing a domain, contains a
matrix of cell values. The SubCellspace class is a child class derived
from Cellspace, with an additional SubCellspacelnfo attribute
component indicating the SubCellspace's ID, dimensions, and min-
imal bounding rectangle (MBR) within a Cellspace. Thus, a Sub-
Cellspace object, representing a sub-domain, contains a subset of
cell values in a whole Cellspace. A Layer object may include a whole
Cellspace and/or multiple SubCelispaces (Fig. 1).

To support focal operations, the Neighborhood class can repre-
sent various configurations (shapes and weight distributions) of a
moving window, including the regular Von Neumann and Moore
neighborhoods, and user-defined irregular, asymmetric and
discontinuous ones.

The DataManager class provides integrated data management

http://www.gdal.org

Download English Version:

https://daneshyari.com/en/article/4978256

Download Persian Version:

https://daneshyari.com/article/4978256

Daneshyari.com

https://daneshyari.com/en/article/4978256
https://daneshyari.com/article/4978256
https://daneshyari.com

