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a b s t r a c t

Sensitivity and identifiability analyses are common diagnostic tools to address over-parametrization in
complex environmental models, but a combined application of the two analyses is rarely conducted. In
this study, we performed a temporal global sensitivity analysis using the variance-based method of
Sobol’ and a temporal identifiability analysis of model parameters using the dynamic identifiability
method (DYNIA). We discuss the relationship between the two analyses with a focus on parameter
identification and output uncertainty reduction. The hydrological model HydroGeoSphere was used to
simulate daily evapotranspiration, water content, and seepage at the lysimeter scale. We found that
identifiability of a parameter does not necessarily reduce output uncertainty. It was also found that the
information from the main and total effects (main Sobol' sensitivity indices) is required to allow un-
certainty reduction in the model output. Overall, the study highlights the role of combined temporal
diagnostic tools for improving our understanding of model behavior.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The advances in computer science have supported the devel-
opment and use of integrated and complex environmental models.
In principle, the advantage of such models is that they provide a
detailed description of the system, including the spatial and tem-
poral incorporation of the relevant processes. Therefore these
models offer a variety of possibilities in scenario analysis and de-
cision support systems (De Lange et al., 2014). However, the
applicability of such models has found some limitations (Beven,
2006). Among others, parametrization of complex environmental
models is recognized as a crucial step for a proper model applica-
tion. On the one hand, a large number of parameters usually
required by these complex models cannot always be measured
directly. On the other hand, inverse modeling to determine these
specific parameters could be hindered by the limitation in the

availability of data. Under these conditions the available observa-
tions do not provide sufficient information for the identification of
the model parameters and therefore compromise model perfor-
mance. For these reasons, there remains a need for diagnostic
methods (Gupta et al., 2008; Matott et al., 2009) to link model
formulation to its consequent impacts on process-level behavior in
order to inform model selection, calibration, and interpretation
(Herman et al., 2013). Diagnostic methods explore the input-output
response of the models and thus give a better overview of the
model behavior.

Sensitivity analysis (SA) is a diagnostic method which can be
used for exploring uncertainty within complex parameter spaces
and interpreting model behavior in the context of the system being
modeled (Franchini et al., 1996; Hall et al., 2005; Herman et al.,
2013). Among many, global sensitivity analysis (GSA) methods are
preferred since they study the effects of input variations on the
outputs in the entire allowable ranges of the input space. Sobol'
analysis is a global and variance-based method which is indepen-
dent of model linearity and model monotonicity (Saltelli et al.,
2010). It separates the contributions of individual parameters as
well as the interacting contributions of the parameters to the
output variance. In this paper, we address two main purposes of
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Sobol' analysis. The first one helps to identify the parameters that
are not important (low/insensitive parameters) to model outputs.
The aim of this application is to reduce the number of free-varying
and less influential parameters by assigning constant values to
them, as these parameters have a minimum potential to reduce the
output uncertainty (factor fixing). For example, van Werkhoven
et al. (2009) applied Sobol' analysis in order to identify insensi-
tive parameters that had an overall sensitivity level less than a
certain threshold. Although they reduced the burden of the cali-
bration process by excluding insensitive parameters in the cali-
bration (assigning fixed values to them), their simulation results
had essentially the same predictive performance as opposed to the
case where all the parameters were included in calibration. For this
reason, the second application of Sobol’ analysis which is known as
factor prioritization is to identify the important parameters (sen-
sitive) to the model output response or an objective function. The
focus of factor prioritization is on those parameters that have the
potential to maximally reduce the output uncertainty and to
improve the performance of the model output (Abebe et al., 2010;
Saltelli et al., 2006). As a diagnostic tool, Sobol’ analysis has been
used temporarily to identify the model components which control
the performance under different conditions (Herman et al., 2013;
Massmann and Holzmann, 2012). Temporal application of Sobol'
can help diagnose to what extent and at what sensitivity level the
parameters can impact the model performance in different time
periods (Garambois et al., 2013; Massmann et al., 2014) and
therefore can assist in identifying the dominant processes and
conditions for deriving a more accurate estimation of the model
parameters (Guse et al., 2014; Reusser and Zehe, 2011).

Another relevant diagnostic tool used to explore the input-
output response of a model is the so-called identifiability analysis
(IA). Various definitions of parameter identifiability can be found in
the literature (e.g., Brun et al., 2001; Matott et al., 2009) and
therefore, several methods have been developed to address
parameter identifiability (Bastidas et al., 1999; Doherty and Hunt,
2009; Wagener et al., 2003). However, the goal of some of these
methods overlaps with the optimization approaches (Shin et al.,
2015). In this study, identifiability is defined as the capability to
constrain the range of variation of parameters for a given set of
available observations. The dynamic identifiability analysis (DYNIA)
method developed byWagener et al. (2003) is amethod specifically
developed for the identifiability analysis. It has been widely used
since it is relatively immune for the effects of model nonlinearity on
parameter estimates and also due to its ease of use. The advantage
of the DYNIA method, in comparison to the other competitive
identifiability approaches, is that it avoids the aggregation of model
residuals into an objective function calculated for the entire
simulation time. In fact, DYNIA does not let specific modes of hy-
drological simulations dominate the individual response modes,
because it calculates the objective function for running windows
that are shorter than the entire simulation time. This capability of
DYNIA enables a modeler to determine the time periods where
narrow range of parameter values can be obtained. For example,
Abebe et al. (2010) applied DYNIA analysis on a rainfall-runoff
model and found a systematic dependence between some model
parameters and the state of soil moisture, indicating a calibration
scheme with state variable, where possible, may help find the
representative values of a given catchment.

While sensitivity and identifiability analyses are relevant, they
answer different questions. However, in some studies, identifi-
ability of model parameters has been discussed in terms of
parameter sensitivity, assuming that the chances of parameter
identifiability increase as the parameter becomes more sensitive
(Hartmann et al., 2013; Kelleher et al., 2013; Shin et al., 2013). Cibin
et al. (2010) evaluated the identifiability of SWATmodel parameters

visually and showed that high parameter sensitivity does not
necessarily lead to parameter identifiability. Recently, Pianosi and
Wagener (2016) presented a SA and IA showing the relative
importance of parameter uncertainty versus data uncertainty.
Therefore, the main objective of our study is to investigate whether
there is a clear relationship between identifiability and sensitivity
analyses. In addition, as the two analyses can be accomplished with
the same inputs, and both of the analyses show different aspects of
the input-output space, we chose their combined use for diagnosis
analysis. To that end, we applied the numerical and physically-
based model HydroGeoSphere (HGS) (Therrien et al., 2010) to
simulate the daily water balance components (i.e. drainage,
evapotranspiration and soil moisture) in the framework of a
weighing lysimeter. The model has 28 parameters and consists of
four soil layers as well as a preferential flow component. Due to the
advantageous properties of the diagnostic Sobol' analysis, a tem-
poral sensitivity analysis is conducted to analyze the temporal
dynamics of parameter sensitivity. This analysis can help to di-
agnose the time periods where specific model components such as
preferential flow dominate the simulation response. It also helps to
apportion the uncertainty in the outputs of the model to the indi-
vidual contribution of the model parameters as well as to the
interaction of the parameters. In the second step, we run a temporal
identifiability analysis to distinguish the time periods where
parameter values can be constrained based on the available ob-
servations, i.e. free drainage (lysimeter discharge), evapotranspi-
ration and soil moisture. In the end, we discuss the relationship
between the results obtained from the temporal SA and IA and
show how these two analyses provide complimentary information.

2. Methods

2.1. Experimental site and data-set

The lysimeter of our study belongs to the category of large
weighing lysimeters and is located in the Rietholzbach catchment
in northeast Switzerland. The mean annual precipitation, evapo-
transpiration, and temperature are 1450 mm, 560 mm and 7.1 �C,
respectively (Seneviratne et al., 2012). The lysimeter is 2.5 m deep
and has been back filled with gleyic cambisol soil from the sur-
rounding area. The vegetation on top of the lysimeter is grass and
represents the surrounding area. Free draining seepage, actual
evapotranspiration, and water content are continuously measured
since 1976. Soil moisture content is measured with time domain
reflectometry (TDR) at depths of 5, 15, 25, 55 and 80 cm. The
lysimeter is located close to a weather station where precipitation,
net radiation, temperature and wind speed are measured contin-
uously. Precipitation is measured with heated tipping buckets
located at 1.5 m above ground and at the ground level. We used the
above ground gauge data because it is less biased, particularly in
winter. For more details on the lysimeter and errors of the
measuring devices we refer to Seneviratne et al. (2012) and
Ghasemizade et al. (2015).

2.2. Model set-up

The HGS model has demonstrated good capability in repro-
ducing the main components of the water balance under different
conditions (Li et al., 2008; Rozemeijer et al., 2010; Zhu et al., 2012).
HGS simulates evapotranspiration based on the method of
Kristensen and Jensen (1975) and matrix flow based on Richards
equation. Due to the existence of preferential flow in the Rie-
tholzbach lysimeter (Menzel and Demuth, 1993; Vitvar and
Balderer, 1997), the preferential flow component was included in
our modeling framework. We applied the method of dual
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