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a b s t r a c t

Distributed environmental models are usually high-dimensional and non-linear. To comprehensively
evaluate the spatiotemporal dynamics of model controls, we propose a novel multi-step approach based
on Sobol's method to evaluate parameter sensitivity as well as interactions with respect to different
model outlet points, using different objective functions to assess different hydrodynamic conditions; all
varying through time. This complete sensitivity analysis can be performed for prior and posterior
parameter ranges. The difference between them can be used to assess the influence of parameter con-
straints on the results of sensitivity analyses. We applied this holistic approach to an existing distributed
karst watershed model. The results demonstrated that 1) a limited number of spatially-distributed pa-
rameters control the varying flow pattern, 2) the model is nonlinear and the influential parameters are
highly correlated in the model domain and 3) the spatial patterns of identified parameter sensitivity and
interactions are strongly influenced by the specified parameter bounds.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed modelling is widely applied to simulate broad
classes of pathways for water movement through space, e.g.,
overland flow, unsaturated flow in the vadose zone, and saturated
groundwater flow (Kampf and Burges, 2007). In recent years, these
distributed hydrological models have become very popular inmany
applications, such as advancing scientific understanding of under-
lying hydrological processes at the surface (Lehning et al., 2006)
and in the subsurface (Worthington, 2009); analyzing the potential
impacts of land use (Andrew and Dymond, 2007) and climate
change (Krysanova et al., 2007); and developing water quantity and
quality management options for informed decision making
(Ahrends et al., 2008; Pe~na-Haro et al., 2011).

Sensitivity analysis (SA) methods are often used for developing
and evaluating complex distributed hydrological models
(Christiaens and Feyen, 2002; Gamerith et al., 2013; Herman et al.,
2013; Hill and Tiedeman, 2007; Nossent et al., 2011; Pappenberger

et al., 2008; Sieber and Uhlenbrook, 2005; Tang et al., 2007a; van
Werkhoven et al., 2008). Generally, SA is used to assess the
contribution of individual inputs or groups of inputs on model
outputs and to identify key inputs that control model outputs
(Razavi and Gupta, 2015). Mostly, SA is assessed with respect to
signatures or error metrics that are applied to model outputs.
Performing a SA in model space domain may enhance under-
standing of the model response to not only variation in model in-
puts, but also their spatial distribution (Fisher et al., 1997; McIntyre
et al., 2005; Moreau et al., 2013). Consequently, according to
Wagener et al. (2009a), the SA results can be used to: 1) select input
parameters to include in a calibration procedure or enable a more
focused planning of future research and field measurement, 2)
evaluate the realism of parameter values and boundary conditions,
3) prove that the model is sufficiently sensitive to represent the
behavior of a natural system, and 4) reduce a model to its essential
structures.

SA can be categorized into local and global methods (Saltelli
et al., 2000). Compared to local methods, global methods vary all
parameters simultaneously within predefined regions to quantify
their importance and possible interactions (Saltelli, 2004). A global
sensitivity analysis method that is very popular inmany fields is the
variance-based Sobol's method (Sobol', 1990). In general, variance-
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based sensitivity analysis methods aim to quantify variance in
model output based on variance in model inputs and their in-
teractions with one another. For Sobol's method, these responses,
caused either by a single parameter or by the interaction of two or
more parameters, are expressed as sensitivity indices. These indices
represent fractions of the unconditional model output variance. In
recent years, this powerful SA technique has been increasingly
applied to complex distributed models, because of its ability to
incorporate parameter interactions and its relatively straightfor-
ward interpretation (Hall et al., 2005; Nossent et al., 2011;
Pappenberger et al., 2008; Song et al., 2012; Tang et al., 2007a;
van Werkhoven et al., 2008; Wagener et al., 2009b; Zhang et al.,
2013). A powerful extension of the conventional application of
Sobol's method is to evaluate event-scale spatial sensitivities (Tang
et al., 2007a; van Werkhoven et al., 2008). Wagener et al. (2009b)
demonstrated that the results strongly depend on the chosen
objective function (i.e. considered system state) and suggested
using a multi-objective approach to explore spatial parameter
controls limited by event-scale. Focusing on the event-scale inde-
pendence, dynamic controls of distributed models have been
explored at a predefined time step throughout the model simula-
tion by using the Method of Morris (Herman et al., 2013) and the
Fourier amplitude sensitivity test (Reusser et al., 2011).

However, in past studies (e.g. Nossent et al., 2011; Sieber and
Uhlenbrook, 2005; Song et al., 2012; Zhang et al., 2013), the
distributed parameter field was mostly assumed to be spatially-
homogenous. Only a few studies (Herman et al., 2013; Tang et al.,
2007a; van Werkhoven et al., 2008) have investigated the sensi-
tivity of model behavior to heterogeneous spatially-distributed
parameters. Furthermore, the effects of spatially-distributed pa-
rameters are only assessed by analyzing the variance of non-
spatially-distributed model output. To fill this knowledge gap, the
present work will focus on characterizing uncertainty for spatially-
heterogeneous distributed parameters, and their apportionment on
spatially-distributed model outputs. Additionally, the issue of
parameter constraints and their influence on the results of sensi-
tivity analyses is generally not considered in any detail. The final
aim of the present work is to develop a balanced approach based on
Sobol's method for 1) spatial and temporal sensitivity analysis
which is suitable for non-stationary, spatially-distributed models
with high complexity, high parameter interactions, and high non-
linearity, 2) identifying the spatiotemporal processes controlling
model behavior, 3) comprehensive evaluation of parameter realism
across model time and space domains and 4) assessing the impact
of parameter constraints on previous sensitivity analysis results.

We applied our method to the existing distributed karst
watershed model by Chen and Goldscheider (2014). In general,
karst aquifers are highly sensitive to environmental changes and
more vulnerable to contamination than other aquifer types due to
their specific hydraulic properties (Goldscheider and Drew, 2007).
The model case study focused on a complex karstified alpine car-
bonate aquifer system in the Schwarzwasser Valley (Austria/Ger-
many), where the aquifer drainage dynamics are characterized by
extreme hydraulic spatial heterogeneity (Goldscheider, 2005). Our
new method is used to evaluate the spatiotemporal dynamics of
model controls in the watershed model.

2. Study area

The Hochifen-Gottesacker karst system is located in the
Northern Alps on the Germany/Austria border (Fig. 1a). It has an
area of about 35 km2, and an altitude varying between 1000 m asl
(the lowest part of the Schwarzwasser valley) and 2230 m asl (the
summit of Mt. Hochifen). It should be noted that in this study, we
consider summer periods when snow processes are not important.

A hydrogeological conceptual model was developed through
geological mapping and several quantitative multi-tracer tests
(Goldscheider, 2005; G€oppert and Goldscheider, 2008). In the study
area, the Schrattenkalk limestone with a thickness of about 100 m
acts as the main karst aquifer, and is underlain by marl formations.
Flow paths in the karst aquifer are controlled by geologic structures
and generally follow plunging synclines. Hydrologically, the karst
aquifer is directly recharged (autogenically) from precipitation and
indirectly (allogenically) from surface streams, which drain the part
of the catchment area that consists of low permeability Flysch
rocks. The tracer tests confirmed that two parallel drainage systems
exist in this valley: a surface stream and a continuous underground
karst drainage system along the valley axis (Goldscheider, 2005).
The karst aquifer is mainly drained by three outlets: 1) an estavelle
(QE) at 1120 m asl associated with a cave forms a reversible hy-
draulic connection between the two drainage systems and dis-
charges up to about 4 m3/s, 2) a large but intermittent and
intermediate overflow spring (QA) at 1080 m asl discharges up to
about 8 m3/s but is inactive in extended dry periods and in winter
and 3) a permanent spring (QS) at 1035 m asl in the valley that
discharges between 0.16 and about 3.5 m3/s.

3. Methodology

Three basic research questions guided us to design this holistic
approach to evaluating spatiotemporal dynamics of controlling
parameters in distributed environmental models:

1. What are the sensitive model parameters in space and time
across the model domain? We evaluated parameter sensitivity
using Sobol's method with respect to different model outlet
points, using different objective functions to assess different
hydrodynamic conditions as a function of time.

2. How do parameter interactions influence the model behavior?
We quantified interactions between model parameters using
Sobol's method in model space and time domains, in order to
better understand model complexity and model internal pro-
cess dynamics.

3. How are our results influenced by the choice of parameter
ranges? We used the DREAM algorithm to constrain the model
and to explore posterior parameter bounds derived from the
posterior distributions. The complete sensitivity analysis was
performed for both initial (prior) and posterior parameter
ranges. So we could assess differences between the parameter
sensitivity based on prior and posterior information, and assess
the influence of parameter constraints on previous sensitivity
analysis results.

3.1. Model setup

For the present work, we used a slightly modified version of the
existing distributed watershed model by Chen and Goldscheider
(2014), which is mainly based on the distributed hydrology-
hydraulic water quality simulation model e Storm Water Man-
agement Model (SWMM, version 5.0) developed by the EPA
(Rossman, 2010). In our model, recharge, storage and drainage of
water in the karst catchment are represented by a concept-based
reservoir module, which is directly coupled to a downstream
conduit drainage module simulating highly variable flow in the
underground karst drainage system along the valley axis (Fig. 1b
and c). The karst catchment is divided into four sub-catchments (Ie
IV) corresponding to local tectonic structures. The recharge for in-
dividual sub-catchments is calculated separately using interpolated
meteorological input data over the study area, while allogenic
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