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a b s t r a c t

We submitted the semi-empirical, process-based wind-risk model ForestGALES to a variance-based
sensitivity analysis using the method of Sobo�l for correlated variables proposed by Kucherenko et al.
(2012). Our results show that ForestGALES is able to simulate very effectively the dynamics of wind
damage to forest stands, as the model architecture reflects the significant influence of tree height,
stocking density, dbh, and size of an upwind gap, on the calculations of the critical wind speeds of
damage. These results highlight the importance of accurate knowledge of the values of these variables
when calculating the risk of wind damage with ForestGALES. Conversely, rooting depth and soil type, i.e.
the model input variables on which the empirical component of ForestGALES that describes the resis-
tance to overturning is based, contribute only marginally to the variation in the outputs. We show that
these two variables can confidently be fixed at a nominal value without significantly affecting the
model's predictions. The variance-based method used in this study is equally sensitive to the accurate
description of the probability distribution functions of the scrutinised variables, as it is to their corre-
lation structure.

Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.

Software availability

Name of software: ForestGALES
Developers: Forest Research, INRA, and the University of Edinburgh
Contact address: Forest Research, Northern Research Station,

Roslin, Midlothian EH25 9SY, United Kingdom Email:
forestgales.support@forestry.gsi.gov.uk

Availability and Online Documentation: The software along with
supporting material is freely available. Go to http://www.
forestresearch.gov.uk/forestgales to find out how to
obtain the software or email forestgales.support@
forestry.gsi.gov.uk

Year first available: 2000
Hardware required: IBM compatible PC
Software required: MS Windows
Programming language: Borland Delphi 5.0®. Versions have also

been written in Python, Fortran, R and Java. Contact Prof.

Barry Gardiner (barry.gardiner@bordeaux.inra.fr) for
further details. Contact the corresponding author (tom.
locatelli@forestry.gsi.gov.uk) for information on the R
version

Program size: 10 MB.With all additional support files andmanuals:
25 MB. For free professional tools for sensitivity analysis
please visit the European Commission Joint Research
Centre sensitivity analysis page at https://ec.europa.eu/
jrc/en/samo/simlab Please contact Dr. Stefano Tarantola
(stefano.tarantola@jrc.ec.europa.eu) for information on
the Matlab scripts of the Sobo�l method for the case of
correlated variables

1. Introduction

Environmental modelling has become a crucial part of the study
of environmental phenomena. Significant advances in the fields of
hardware and computing now allow for the creation of complex,
computationally-demanding, process-based models, aimed at the
investigation of natural systems (e.g. Nossent et al., 2011). These
complex models are extensively adopted in support of decision-
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making and for environmental policy settings (e.g. Rahmstorf et al.
(2007) on IPCC projections). While a large amount of time and
resources are spent to formalise nature in mathematical terms,
considerably less effort is often made to investigate the behaviour
of mathematical models, which is often done as an “afterthought”
(Saltelli and Funtowicz, 2014). As elegantly discussed by Oreskes
et al. (1994), the same practices of model validation, evaluation,
and confirmation, are philosophical and practical minefields.
Modellers are confronted with these issues for a number of rea-
sons: natural systems, which are inherently open in nature, are
forced into closed systems to obtain mathematical solutions;
scaling issues can arise when the scales at which some elements of
a model are calculated differ from the scale of application of the
model; nonuniqueness of modelling approaches might result in a
faulty model providing “reasonable” outputs (Oreskes et al., 1994).
Ultimately, however, the main issue with environmental modelling
is the same reason why models are built: we can never exactly
know all the data, and those that we do know, we do so with a
degree of uncertainty.With regards to themodelling process, in our
paper we refer to uncertainty as incomplete knowledge of param-
eter values (Gaber et al., 2009). Deterministic approaches to
modelling require elimination of these uncertainties, thus effec-
tively further removing amodel from its intended representation of
reality. The inadequacy of the attempts to eliminate at all costs the
uncertainties of the parameters and variables of amodel, in order to
produce completely deterministic results, is nowadays generally
accepted (e.g. Penman et al., 2003). The transparency of model
predictions is an important requirement especially when models
are applied for decision-making, and in policy frameworks (e.g. the
US Environmental Protection Agency, see Gaber et al. (2009)). To
this end, uncertainty analysis is normally applied to quantify the
uncertainties of the input variables, parameters, and outputs of a
model, thus providing some insight on the reliability and the
applicability range of the model.

On the other hand, the issue of sensitivity of model predictions
to variation in model parameters and variables is still relatively
underestimated. Quoting Saltelli et al. (2004), a sensitivity analysis
is “The study of how uncertainty in the output of a model (…) can be
apportioned to different sources of uncertainty in the model input”.
However, when performed appropriately (Saltelli and Annoni,
2010), sensitivity analysis (SA) of mathematical models is a tool
that can helpwith fundamental issues about the robustness and the
behaviour of a model (Tarantola et al., 2002; Norton, 2015). A
number of techniques exist to perform sensitivity analysis (see
https://ec.europa.eu/jrc/en/samo/methods). These can be broadly
divided in two groups, typically referred to as “local” and “global”,
on the basis of the region of the input space that is scrutinised in the
analysis. Local SA are normally based on derivatives of the output Y
with respect to one factor Xi (e.g. dY=dXi

), where by factor here we
denote either a model parameter or an input variable. These de-
rivatives are often normalised by the input-output standard de-
viations (they are said to be sigma-normalised) to produce more
robust sensitivity indices, as recommended by the Intergovern-
mental Panel on Climate Change in their guidelines on the in-
ventories of greenhouse gases (IPCC, 1999; IPCC, 2000). However,
with this approach only the base point where the derivatives are
computed is investigated, which is an issue when the model is of
unknown linearity (Saltelli et al., 2008). Local derivatives-based
methods are mostly adopted within the context of one-at-a-time
(OAT) approaches, where only one factor is perturbed while all
the others are fixed at a nominal value (usually the mean). There-
fore, the effects of factors interactions on the output variance are
neglected with OAT methods, which are therefore only applicable
for strictly additive models (Campolongo and Saltelli, 1997). Global
SA (GSA) methods, on the other hand, allow for the exploration of

the entire range of the factors, and for simultaneous perturbation of
all the factors. The most powerful GSA methods are variance-based
techniques that decompose the total variance of the output into
conditional variances for single factors and for sets of factors. These
techniques include the importance measures of Iman and Hora
(1990) and of Sacks et al. (1989), the FAST (Fourier Amplitude
Sensitivity Test) method (Cukier et al., 1973,1978) and the extended
FAST (Saltelli et al., 1999), and the method of Sobo�l (Sobo�l, 2001).
The last two approaches can be solved numerically with Monte
Carlo methods. Derivatives-based methods have been developed
for global sensitivity measures (DGSM, e.g. Kucherenko et al., 2009;
Sobo�l and Kucherenko, 2009). The values of DGSM is exactly equal
to that of total sensitivity indices calculated with the Sobol' method
(see section 2.2.1) in a number of cases, e.g. for linear models, while
in a general case they correspond to the upper bound of the total
Sobol' indices, with the advantage of a much shorter computational
time. Variance-based GSA methods have a number of advantages:
they are model-independent; they can capture the influence of the
full range of variation of each input variable; they allow for the
investigation of interaction effects amongst variables; and they
provide the possibility of grouping factors (Saltelli et al., 2008).
Their drawback is the high computational cost required for per-
forming such techniques, due to the large number of model exe-
cutions required for the convergence of the values of the sensitivity
indices (Kucherenko et al., 2012). For this reason, a large body of
research has been devoted to devise efficient algorithms for their
computation (e.g. Kucherenko et al., 2012; Mara and Tarantola,
2012; Most, 2012; Saltelli, 2002).

Of the aforementioned variance-based GSA techniques, the
method of Sobo�l has found favour with modellers in the environ-
mental sciences, because of the relatively straightforward inter-
pretation of the sensitivity indices calculated with this method, and
because it very efficiently samples the factors space (Sobo�l, 1990;
Yang, 2011; Kucherenko et al., 2015). The Sobo�l method is often
used as a benchmark against which to compare the results of other
SA techniques (Confalonieri et al., 2010). In a previous issue of this
journal, Nossent et al. (2011) successfully applied the Sobo�l method
to the identification of the most, and the least, important factors in
a SWAT model (Soil and Water Assessment Tool). The authors also
provided an exhaustive description of the Monte Carlo procedures
required for the calculation of the Sobo�l sensitivity indices. Song
et al. (2012) used the method of Sobo�l for the SA of the 3-PG2
forest growth model, aimed at model calibration. A known issue
with variance-based GSA techniques is how to account for corre-
lation between factors when calculating the conditional variances.
Indeed, correlation amongst factors in environmental models is
typical. A number of studies propose methods to obviate the issue
of dependent factors in GSA (e.g. Mara and Tarantola, 2012; Most,
2012).

In this paper, we submit ForestGALES, a forest wind-risk model,
to a variance-based GSA using the method of Kucherenko et al.
(2012), a generalisation of the method of Sobo�l for correlated fac-
tors. The rationale of ForestGALES, together with the most impor-
tant model calculations for the context of our GSA, is discussed in
the Methods section. For a thorough description of the model, the
interested reader is referred to Hale et al. (2015), published in a
previous issue of this journal. Variance-based GSA are normally
applied to complex models composed of a large number of factors,
sometimes in excess of one hundred, mostly for the direct benefit of
the modelling community. In this paper, we limit our GSA to the
inputs of ForestGALES that are controllable by the end-users.
Focussing on those input variables that are user-modifiable ex-
tends the benefits of a GSA to the end-user base of an environ-
mental model, and facilitates the interpretation of the results of the
SA in a practical setting. To extend the results of our GSA to a large
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