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a b s t r a c t

This paper discusses an innovative framework to use crop models which combines sensitivity analysis,
uncertainty analysis and constrained optimisation runs for irrigation optimisation purposes, facing
competing constraints on several agricultural variables (e.g. crop yield, total irrigation amount, financial
expectations). For simplicity, this ex-post optimisation relies on direct calculations only, exploiting the
dispersions on the target variables. The screening of the parameter space for sensitivity analysis yields a
reference dispersion which is expectedly reduced by reducing the uncertainties in the sensitive pa-
rameters and/or climatic forcings. Additional dispersions are calculated to evaluate if the management
controls on irrigation strategies (amounts, triggers, periods) are more influential on model predictions
than the remaining uncertainties on the soil, plant, irrigation and climatic inputs, eventually allowing
optimisation. As a case study, the Optirrig model is used. A discussion proposes future ways to convert
diagnostics into real-time near-optimal decision rules, for example through learning algorithms.

© 2016 Elsevier Ltd. All rights reserved.

Software availability

Neither the Optirrig model nor the presented irrigation opti-
misation code are downloadable as open-source material, due to
the licensing strategy of Irstea (the French National Research
Institute of Science and Technology for Environment and Agricul-
ture). Both have been developed in FORTRAN but will be recoded in
Python: new Graphical User Interface is planed and the software
will be distributed at this time.

1. Introduction

Crop models aim to predict agricultural yields from selected soil
properties, plant characteristics and climatic forcings, and possibly
dependent on irrigation strategies. Even if they are of limited

extent, the random uncertainties in source data (Nonhebel, 1994;
Aggarwal, 1995; Heinemann et al., 2002; Rivington et al., 2006;
Spank et al., 2013) can combine and propagate through the
models, whose predictions should therefore include statistical
confidence intervals or at least relevant, dedicated estimates of the
error terms or trends affecting model outputs (Monteith, 1996;
Challinor et al., 2009, 2010; Wallach et al., 2012; Asseng et al.,
2013). Noticeable differences exist between model structures,
purposes and responses, especially for climate change scenarios,
hence the difficulty to decipher absolute, normative evaluations.
This, in turn, outlines the interest in model intercomparison
methodologies (R€otter et al., 2011; White et al., 2011; Asseng et al.,
2013) that help positioning any tested model among possible al-
ternatives or help choosing between several candidate models.

Whatever the selected model, model exploration, sensitivity
analysis and uncertainty assessment always need intensive calcu-
lations which typically fall within the scope of model automation
procedures: these can then provide both the agricultural scenarios
and their associated dispersion envelopes. As a result the
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optimisation of irrigation strategies consists of comparing what
may be gained from appropriate resources management, taking
into account the dispersion in model predictions that arises from
intrinsic uncertainties in source data, or from hypotheses of climate
change and increased variability (Rosenzweig and Parry, 1994;
Rosenzweig et al., 2014) with the associated deficit irrigation is-
sues (English, 1990; Reca et al., 2001; Pereira et al., 2002; Geerts
and Raes, 2009). Several simulation platforms have been devel-
oped in the recent years, based on some of the most popular crop
models. However, agronomical modelling still seems to miss a
framework that relies on model automation to propose successive
steps towards the identification of the context-dependent best
irrigation strategies. Moreover, these “multi-variable constrained
optimisation” strategies can be inferred from objective functions
that not only rely on crop yield levels (Sun et al., 2006; Cetin and
Uygan, 2008).

Advances in computer science have facilitated the automation of
crop models. For example, the connection to environmental and
socio-economic issues, with a clear trend to use biophysical models
within integrated system and economic viability assessment (Vatn
et al., 1999; Berntsen et al., 2003; Belcher et al., 2004; Janssen and
van Ittersum, 2007). In addition, the inclusion of crop models in
simulation platforms related to communication between models
based on common databases or input/output formats. For example,
AqYield (Nolot and Debaeke, 2003; Murgue et al., 2014; Constantin
et al., 2015)may now be run on theMAELIA platform (Gaudou et al.,
2013) to handle low-water management issues and multi-agent
spatial planning, STICS (Brisson et al., 2003, 2009) runs on the
RECORD platform (Bergez et al., 2013) that integrates farming
practices into agro-ecosystems and APSIM (McCown et al., 1995;
Keating et al., 2003) now embeds the PMF - Plant Modelling
Framework (Brown et al., 2014) as a sub-model. Not long ago, the
HarvestChoice (2010) platform already allowed scenarios and
regional-scale decision-making on the basis of data issued from
APSIM or DSSAT (Jones et al., 2003). Other composite (SAFYE,
Duchemin et al., 2006; 2008) or generic crop models (RZWQM,
Hanson et al., 1998; Ma et al., 2006) offer many of the above pos-
sibilities, while Aquacrop (Steduto et al., 2009; Raes et al., 2009)
was used in combination with an economic model to optimise
irrigation management (García-Vila and Fereres, 2012). Irrigation
management, as a part of ecosystem responses to climate changes,
has been addressed by APSIM (Ludwig and Asseng, 2006), WOFOS
(Wolf and van Diepen,1995; Reidsma et al., 2009; Supit et al., 2012),
RZWQM (Ko et al., 2011; Islam et al., 2012) and STICS (Singh et al.,
2014), among others.

Finally, a typical evolution through the last decades is that of the
Wageningen crop models (e.g. WOFOS, van Diepen et al., 1989;
Boogaard et al., 1998; van Ittersum et al., 2003) from their orig-
inal formulations in the 1980's (often in FORTRAN 77) to object-
oriented and modular programming structures (e.g. PCSE - Py-
thon Crop Simulation Development, de Wit, 2015) at the assumed
risk of slower model execution. In summary, what is sought in
general is (i) simulation engines running multi-agent scenarios, (ii)
the flexibility of modular designs that use crop models as plug-ins
and (iii) interfaces between models based on common exchange
file formats. The framework presented here is compatiblewith such
approaches as (i) it offers the possibility to performmulti-objective
constrained optimisation from the analysis of a wide variety of
user-defined irrigation scenarios, (ii) most of the automated crop
models fit in this framework, provided (iii) they communicate
through input/output text files. The newly-automated version of
the Optirrig model (formerly the PILOTE model, Mailhol et al., 1997,
2011; Khaledian et al., 2009; Feng et al., 2014) has been chosen here
for application of the proposed framework, providing guidelines for
the identification of optimal irrigation parameters from successive

direct calculations (sensitivity analysis, uncertainty analysis then
constrained optimisation runs) associated with decreasing disper-
sion on the target variables (i.e. convergence towards one or several
equifinal parameter sets).

Section 2 of this paper highlights the successive stages of the
framework that leads to the multi-objective constrained optimi-
sation of irrigation strategies, across preliminary sensitivity and
uncertainty analyses, also indicating ways to evaluate the effect of
management decisions versus parameter and forcing uncertainties
(Section 2.1). For simplicity, the Optirrig model developed at Irstea
is chosen for these applications (Section 2.2) but the framework
was designed to be as generic as possible. Section 3 presents the
results of the sensitivity analysis (Section 3.1), uncertainty analysis
(Section 3.2) and constrained optimisation runs (Section 3.3). The
discussion (Section 3.4) highlights the specificities, strengths and
limitations of this framework (Section 3.4.1) as well as possible
adaptations for the search of real-time near-optimal decision rules
(Section 3.4.2). Section 4 is the conclusion.

2. Material and methods

2.1. Framework for multi-objective constrained optimisation

2.1.1. Scope and overview
This framework indicates how to perform scenarios of agricul-

tural yield from irrigation strategies (e.g. dates, doses, trigger
criteria), acknowledging uncertainties on both the model parame-
ters (e.g. soil and plant parameters) and its climatic forcings (e.g.
rain, potential evapotranspiration, radiation and temperature),
possibly handling hypotheses of climate change and variability.
However, irrigation optimisation is defined here as extracting the
user-defined best cases from a series of scenarios, which typically
requires the definition of one or several objective functions, in
addition to the agricultural yield (Y). Other candidates are the total
irrigation amount (I), the irrigationwater use efficiency (IWUE) and
an economic cost function related to financial expectations (F) that
combines the selling price of the harvested crop and the cost of the
irrigation water. In the following, a multi-objective constrained
optimisation framework targets these variables, calculated by most
crop models. Fig. 1 shows an overview of this framework, that in-
volves three successive run series (A. Sensitivity analysis:
Subsection 2.1.2, B. Uncertainty analysis: Subsection 2.1.3 and C.
Constrained optimisation: Subsection 2.1.4) with five stages in each
series (Stage 1- Conceptual case preparation, Stage 2- Technical
case preparation, Stage 3- Controls and settings, Stage 4- Calcula-
tion loop and Stage 5- Post-treatments). The description of the
stages is the same whatever the run series.

Stage 1 is where the modeller builds a mental model of the
problem and selects a strategy to address it. The subsequent stages
are all automated, provided (i) an automated version of the crop
model is available, (ii) it uses a single parameter file (where
parameter sets to process appear on successive lines in this file) and
(iii) it uses a climate file in which the values of forcings in time
appear in columns. Although not shared by all crop models, these
requirements were found sufficiently easy to meet to justify the
automation of the other stages.

Stage 2 is where the selected scenarios are encoded in source
files.

- If the scenarios decided in Stage 1 do not involve random per-
turbations (neither of the parameters nor of the forcings) then
the automated model will run (in Stage 4) on the parametric
scenarios previously placed in its parameter file, using the cur-
rent climate file.
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