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a b s t r a c t

This paper proposes an approach for including deeply uncertain factors directly into a multi-objective
search procedure, to aid in incorporating divergent quantitative scenarios within the model-based de-
cision support process. Specifically, we extend Many Objective Robust Decision Making (MORDM), a
framework for finding and evaluating planning solutions under multiple objectives, to include tech-
niques from robust optimization. Traditional MORDM first optimized a problem under a baseline sce-
nario, then evaluated candidate solutions under an ensemble of uncertain conditions, and finally
discovered scenarios under which solutions are vulnerable. In this analysis, we perform multiple multi-
objective search trials that directly incorporate these discovered scenarios within the search. Through
the analysis, we have created multiple problem formulations to show how methodological choices of
severe scenarios affect the resulting candidate planning solutions. We demonstrate the approach
through a water planning portfolio example in the Lower Rio Grande Valley of Texas.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change, land use change, and other anthropogenic ef-
fects increase the variability of streamflow (Jain et al., 2005; Seager
and Vecchi, 2010) and threaten water security (Gober, 2013;
Vorosmarty et al., 2000). Population growth and urbanization can
exacerbate potential water shortages (Feldman, 2009). Especially in
river basins that straddle political boundaries, water shortages can
strain political relationships between political actors (Wildman and
Forde, 2012).

The hydrological and socioeconomic variables that define these
phenomena can be considered deeply uncertain (Knight, 1921;
Walker et al., 2013). Under deep uncertainty decision makers and
stakeholders cannot agree on the full set of risks and consequences
and the probability of their occurrence (Langlois and Cosgel, 1993).
Scenario analysis (Arnell et al., 2004; Farber et al., 2008; Mahmoud
et al., 2009) is one method for coping with this situation, where a
group of experts define plausible storylines of the values of key
uncertainties in a problem before the decision making process
begins. However, specifying scenarios before performing modeling

exercises lacks the ability to determine which scenarios are the
most important ones for causing systemvulnerabilities. To this end,
a set of bottom-up decision making frameworks (as reviewed in
Dittrich et al., 2016; Giuliani and Castelletti, 2016; Herman et al.,
2015; Kwakkel et al., 2016) have focused on using simulation
model runs to identify potentially severe scenarios based on the
modeled performance metrics. The goal is to create and evaluate
solutions that exhibit robustness. A robust solution is one in which
the solutions’ performance is insensitive to variations in the esti-
mation of parameters that control the calculation of that perfor-
mance (Herman et al., 2015; Matalas and Fiering, 1977). In other
words, bottom-up frameworks test multiple assumptions about
uncertain problem properties and subject planning alternatives to
interesting combinations of various factors.

Herman et al. (2015) characterize bottom-up frameworks with
four methodological choices: (i) how are alternatives identified or
generated; (ii) how are different states of the world sampled; (iii)
how are robustness measures calculated; and (iv) how are key
uncertainties identified using sensitivity analysis or factor mapping
(e.g., the Patient Rule Induction Method, PRIM (Friedman and
Fisher, 1999)). This paper is focused on the first methodological
choice of Herman et al.’s bottom-up taxonomy: how planning al-
ternatives are generated. Mathematical conditions such as the
nonseparability of decision alternatives and noise in the objective
function can pose challenges to such generation techniques.
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Multiobjective Evolutionary Algorithms (MOEAs) are a search
technique which has been increasingly employed to overcome
these challenges (Maier et al., 2014; Reed et al., 2013). MOEA de-
cision support uses a detailed simulation model of a system to
characterize performance of solution alternatives, facilitating a
realistic depiction of the solutions' performance. Beyond simply
suggesting preferred alternatives, MOEAs can aid in analysts and
stakeholders’ understanding of a decision problem (Piscopo et al.,
2015) by generating tradeoff sets that show compromises among
the objectives. These tradeoff sets are defined by Pareto optimality.
Solutions are Pareto optimal if their performance is not exceeded in
any objective by another feasible solution (i.e., for a cost-reliability
optimization problem, the optimal tradeoff is the set of least
possible costs at every level of reliability). Although MOEAs are
effective at generating alternatives, the proper usage of scenario
information and uncertainty within MOEA search is still an open
question.

A set of approaches broadly classified as robust optimization
(RO) has sought to incorporate uncertainty information into opti-
mization (Beyer and Sendhoff, 2007; Deb and Gupta, 2006;
Hamarat et al., 2014; McInerney et al., 2012; Mortazavi-Naeini
et al., 2015; Mulvey et al., 1995; Ray et al., 2014; Watkins Jr. and
McKinney, 1997). Notably, Hamarat et al. (2014) uses an MOEA and
incorporates uncertainty into the MOEA search process. In that
study, a specific robustness objective function was created in order
to optimize trigger points, which define when to enact changes to a
base policy under changing future conditions. One potential limi-
tation of such approaches is that it is difficult to combine robust-
ness with respect to multiple objectives into a single objective
function. Therefore, this paper will explore how to explore
robustness across multiple objectives simultaneously, building on
an existing framework termed Many Objective Robust Decision
Making (MORDM, Kasprzyk et al., 2013).

MORDM is a bottom-up decision making framework that com-
bines MOEAs with techniques from robust decision making
(Lempert et al., 2006). The non-dominated set fromMOEA search is
subjected to ensembles of randomly generated values of uncertain
factors (e.g., different scaling factors on hydrologic inflows or water
demands). A set of calculations shows how the solutions’ perfor-
mance changes under this ensemble of uncertain conditions. So-
lutions that have low deviations in objective function performance
in the ensemble are considered robust, and visualizations of
robustness metrics are used to guide the choice of one or more
candidate solutions. The final step uses statistical data mining
techniques to discover the most important uncertain factors that
cause the candidate solutions to perform poorly within the un-
certainty ensemble.

In the previous applications of MORDM, authors performed the
optimization using a single realization of input data termed the
baseline scenario: default values of the input parameters and the
input data exhibiting historical distributions. One potential limi-
tation of this approach is that the set of decision variables
comprising each solution are only “trained” to the historical data
and may not be adaptable if the data fundamentally changes
(Ignizio, 1998; Zeleny, 2005). Therefore, this paper incorporates
multiple combinations of uncertain factors into the MOEA search
process itself, with an approach inspired by RO literature.

Specifically, our approach chooses multiple discovered sce-
narios from the MORDM sensitivity analysis and then performs the
optimization under each scenario. The goal is to develop more
diverse sets of decision variables that have better objective function
performance under extreme conditions. Our methodology seeks to
generate a policy that will hold up to many uncertainties without

future adjustments by re-evaluating the resulting solution sets
under multiple scenarios, using visual analytic techniques
(Woodruff et al., 2013) to explore the model results. Importantly,
our approach replicates the runs with different assumptions about
the properties of the included scenarios, which allows an analyst to
interrogate the effect of these chosen scenarios on the optimized
results. The ultimate goal is to develop policies that perform well
under a wide range of plausible futures by exposing some of those
futures directly within the optimization process. A case study of
water planning within the Lower Rio Grande Valley (LRGV) of Texas
is used to demonstrate the approach in order to best capitalize on
previous MORDM work that has utilized this example.

2. Methods

2.1. Multi-objective evolutionary algorithms

MOEAs are heuristic search algorithms that mimic evolutionary
processes to approximate the optimal tradeoff set of solutions to
multi-objective optimization problems (Coello et al., 2007). Recall
that a MOEA's tradeoff set is defined using the concept of Pareto
optimality; a solution is Pareto-optimal if no other feasible solution
exhibits improvement in an objective without sacrificing perfor-
mance in another objective. For non-trivial problems, MOEAs can
only approximate the true Pareto-optimal set, so the sets are often
termed the non-dominated set or the Pareto-approximate set. By
linking to a simulation model, the algorithms use realistic de-
pictions of the modeled processes and can optimize based on
meaningful objective functions. MOEAs are gaining prominence in
the water resources community, both within real water planning
activities withinwater utilities (Asefa, 2015; Basdekas, 2014) and in
research applications, as reviewed in Nicklow et al. (2010) and
Maier et al. (2014).

This study employs the Borg MOEA (Hadka and Reed, 2013) to
generate alternatives. The Borg MOEA is a search framework that
adapts its use of seven different variation operators (simulated
binary crossover, differential evolution, parent-centric recombina-
tion, unimodal normal distribution crossover, simplex crossover,
polynomial mutation, and uniform mutation) based on problem
properties. The algorithm also features epsilon-dominance, which
uses a user-defined epsilon grid to control the precision of each
objective as well as maintains an epsilon-dominance archive of the
best solutions in the search (Laumanns, 2002). Additionally, adap-
tive population sizing adapts the search population size to provide
more diverse solutions to explore as the search continues. The Borg
MOEA was chosen due to its favorable performance on the LRGV
problem in diagnostic analyses (Kasprzyk et al., 2016; Reed et al.,
2013), and the algorithm was also successfully applied to the
LRGV problem using thousands of parallel processors (Reed and
Hadka, 2014). Note that the methods presented in this study are
not specific to the particular Borg MOEA, and researchers can use
other modern MOEAs to explore similar concepts.

2.2. Many objective robust decision making

The many objective robust decision making framework
(MORDM) is a planning framework for complex environmental
systems that integrates MOEA optimization with the RDM frame-
work to optimize and select planning strategies under conditions of
deep uncertainty. MORDM has been applied to a multi-reservoir
system with several different actors coordinating among each
other (Herman et al., 2014), for water quality management (Singh
et al., 2015), and to the LRGV (Kasprzyk et al., 2013), the example
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