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Highlights

• A novel combined FEM approach for contact and finite strain plasticity is developed.
• General isotropic hyperelasticity and orthotropic Hill plasticity are considered.
• All discrete inequalities are reformulated as semi-smooth complementarity functions.
• Efficient non-smooth versions of Newton’s method handle all involved nonlinearities.
• The proposed semi-smooth Newton method is competitive to classical return mapping.

Abstract

A new approach for the unified treatment of frictional contact and orthotropic plasticity at finite strains using semi-smooth
Newton methods is presented. The contact discretization is based on the well-known mortar finite element method using dual
Lagrange multipliers to facilitate the handling of the additional Lagrange multiplier degrees of freedom. Exploiting the similarity
of the typical inequality constraints of plasticity and friction, all involved discrete inequalities are reformulated as nonlinear non-
smooth equations using complementarity functions. The resulting set of discrete semi-smooth equations can be solved efficiently
by a variant of Newton’s method, where all additionally introduced variables are condensed from the global system so that a linear
system only consisting of the displacement degrees of freedom has to be solved in each iteration step. In contrast to classical
radial return mapping methods for computational plasticity, the plastic constraints are not required to hold at every iterate in the
nonlinear solution procedure, but only at convergence. This relaxation in the pre-asymptotic behavior results in an increased flexi-
bility regarding algorithm design and a potentially higher robustness compared to radial return mapping algorithms. The presented
elasto-plasticity algorithm includes arbitrary isotropic hyperelasticity, an anisotropic Hill-type yield function with isotropic and
kinematic hardening, plastic spin and appropriate finite element technology for nearly incompressible materials. Therefore, it is
well suited for the modeling of sheet metal forming and similar processes. Several numerical examples underline the robustness of
the proposed plasticity algorithm and the efficient treatment of elasto-plastic contact problems.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In many engineering applications, ranging from forming processes to crash and impact scenarios, plasticity and
contact in the context of finite deformations or even finite strains come hand in hand. This obviously necessitates
efficient, robust and accurate discretization schemes as well as solution algorithms for elasto-plastic contact. In com-
putational contact mechanics, mortar methods using Lagrange multipliers for the constraint enforcement have been
of particular interest over the past decade, thanks to their sound variational foundation, see e.g. [1–5]. To achieve a
localization of the individual discrete constraints and avoid an increase of the resulting system size by the additional
Lagrange multipliers, so-called dual Lagrange multiplier interpolations have been introduced in the context of do-
main decomposition [6–10]. Due to a biorthogonality property, they allow for a trivial algebraic condensation of the
additional Lagrange multiplier degrees of freedom. When applied to contact mechanics, these dual Lagrange multi-
plier methods have been efficiently combined with semi-smooth Newton methods as an active set strategy [11], see
e.g. [12,13] for applications to small deformation frictionless and frictional contact and [14–19] for finite deformation
frictionless and frictional contact. Within these approaches, the discrete inequality constraints of (frictional) contact
are reformulated using semi-smooth nonlinear complementarity (NCP) functions. Consequently, the resulting formu-
lations are well-suited for generalized Newton methods, see e.g. [20,21], and the contact nonlinearities can be treated
within the same Newton type iteration as geometrical, material and other nonlinearities. For a profound review on
state-of-the-art contact discretizations as well as solution algorithms the reader is referred to [22].

In computational plasticity, the vast majority of research papers focus on new material models rather than algo-
rithms to solve the resulting constrained equations; with regard to solution algorithms radial return mapping methods
have been the most common choice by far since the early days of computational plasticity and were extended to finite
strains for the first time in [23,24]. Meanwhile, they can be found in all standard text books, e.g. [25,26]. Recently,
based on the variational formulation of small strain plasticity, cf. [27], novel solution techniques for this case have
emerged, namely sequential quadratic programming [28], interior point algorithms [29] and NCP functions [30,31]
based on semi-smooth Newton methods. Due to the fundamentally different kinematic description of plasticity at
finite strains compared to small strains (multiplicative vs. additive kinematics), however, these methods cannot be
transferred directly to nonlinear kinematics. At finite strains, variational constitutive updates as proposed in [32] and
more recently in [33–36] have been shown to offer improved efficiency compared to radial return mapping methods
under certain conditions, see e.g. [36].

In this contribution, we present an NCP function based formulation of finite strain plasticity based on the work
in [31] for small deformations. Our formulation not only covers von Mises plasticity, but also an orthotropic Hill-type
yield criterion and an evolution of plastic spin [37]; two ingredients especially important for the application to sheet
metal forming. Moreover, our formulation is based on the multiplicative decomposition of the deformation gradient
into an elastic and a plastic part, and in contrast to most efficient radial return mapping methods using this multi-
plicative kinematics, it is not restricted to a certain form of hyperelastic material behavior, but naturally includes any
isotropic hyperelastic relation in the elastic realm. Finally, in contrast to the previous NCP based plasticity formula-
tions [30,31] using one scalar and one tensor-valued NCP function, we only use one tensor-valued NCP function, and
thus reduce the number of additional unknowns at each quadrature point. These additional unknowns are eliminated
from the global system of equations via element-local condensation such that the remaining linearized system to be
solved only consists of displacement degrees of freedom, just like for the well-known radial return mapping algorithm.
This novel approach for finite strain plasticity allows for an efficient and uniform treatment of elasto-plastic frictional
contact.

The remainder of the paper is outlined as follows. In Section 2, we introduce the strong form of the initial boundary
value problem of elasto-plastic frictional contact at finite strains. This includes the kinematics of frictional contact and
finite strain plasticity. Section 3 introduces a finite element space discretization and an appropriate time discretization
of the time dependent effects of friction and plasticity. In Section 4, we present the novel formulation of a semi-
smooth Newton method for finite strain plasticity, including the consistent linearization of all involved terms. Section 5
shortly outlines the application of F-bar finite element technology to our plasticity formulation. This is crucial to deal
with plastic incompressibility when using first-order finite elements to avoid spurious locking effects. Finally, several
numerical examples in Section 6 demonstrate the robustness and accuracy of the plasticity algorithm and its efficient
combination with a dual Lagrange multiplier contact formulation. We close with several concluding remarks and an
Appendix on general isotropic hyperelasticity for multiplicative elasto-plastic kinematics.
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