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a b s t r a c t

Environmental process modeling is challenged by the lack of high quality data, stochastic variations, and
nonlinear behavior. Conventionally, parameter optimization is based on stochastic sampling techniques
to deal with the nonlinear behavior of the proposed models. Despite widespread use, such tools cannot
guarantee globally optimal parameter estimates. It can be especially difficult in practice to differentiate
between lack of algorithm convergence, convergence to a non-global local optimum, and model structure
deficits. For this reason, we use a deterministic global optimization algorithm for kinetic model identi-
fication and demonstrate it with a model describing a typical batch experiment. A combination of in-
terval arithmetic, reformulations, and relaxations allows globally optimal identification of all (six) model
parameters. In addition, the results suggest that further improvements may be obtained by modification
of the optimization problem or by proof of the hypothesized pseudo-convex nature of the problem
suggested by our results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Despite abundant literature, model identification is a chal-
lenging task for environmental systems which keeps drawing
considerable attention (Marsili-Libelli, 2010). In response, protocols
have been developed to simplify the model identification task
(Jakeman et al., 2006). One important aspect is that environmental
process and system models are typically nonlinear in their pa-
rameters. Despite this problem, nonlinear parameter estimation is
often solvedwith gradient-based optimization techniques thatmay
not converge (Checchi et al. 2007) or which may converge to a local
optimum (Jakeman et al., 2006; Rieger et al., 2012). Alternatively,
stochastic optimization tools in combinationwith sensitivity-based
parameter selection techniques (e.g., Benedetti et al., 2011; Sin
et al., 2008) can ease this task. While fruitful in many cases, sto-
chastic methods can still converge to a local optimum or may not

converge at all. This is a significant drawback if the model structure
itself is uncertain and subject to selection or modification. In other
areas of engineering, deterministic optimization techniques are
more popular. Whereas stochastic optimization methods increase
the chances of finding global optima (in finite time), deterministic
methods find global optima without failure (in finite time). Unfor-
tunately, deterministic optimization still requires a deep under-
standing of the optimization problem and the most efficient
algorithms tend to be tailored to a small set of optimization prob-
lems. However, with this work we show that deterministic opti-
mization is at least applicable for modeling of simple batch
respirometric experiments involving a single reaction. Since such
experiments are typical for biological wastewater treatment pro-
cess modeling, we argue that the provided parameter identification
method is broadly applicable.

In addition to the nonlinear nature of the modeled processes,
other factors complicating model identification include (i) the
stochastic nature of their inputs, (ii) the lack of detailed under-
standing of metabolic pathways, and (iii) the large number of
empirically determined parameters further leading to a lack of
practical or even structural identifiability. While these issues are
important, they are not addressed, diminished, or amplified by this
work. Thus, we consider the experimental design and the produced
experimental data as a given and focus on solving parameter esti-
mation problems to global optimality.

Acronyms: AOB, ammonia oxidizing bacteria; DO, dissoved oxygen; NOB, nitrite
oxidizing bacteria; ODE, ordinary differential equations; OUR, oxygen uptake rate;
QP, quadratic program; TNN, total nitrite nitrogen; WLS, weighted least squares;
WRMSR, weighted root mean squared residuals.
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To showcase the real-world applicability of the developed
optimization method, a data set collected for the purpose of kinetic
model identification of a biological urine treatment process is used.
Separate collection and treatment of urine is a new approach to
optimize sanitation. Two possible applications are the recovery and
recycling of nutrients to agriculture (Udert and W€achter, 2012) and
the prevention of corrosion in sewers by nitrate dosage (Jiang et al.,
2011; Oosterhuis and van Loosdrecht, 2009). Nitrification of urine is
applied in both approaches, either to stabilize volatile ammonia or
to produce the electron acceptor nitrate. Stable nitrification re-
quires balanced activities of both bacterial groups involved in the
process, ammonium oxidizing bacteria (AOB) and nitrite oxidizing
bacteria (NOB). However, stable nitrification is challenging in urine
due to the high pH value and the high concentrations of ammonia,
organic substances, and salts. Three major process failures can
occur (Fumasoli, 2016). First, both AOB and NOB are inhibited at
high pH values due to high concentrations of free ammonia. Sec-
ond, at intermediate pH values AOB grow too fast and produce large
amounts of nitrite, which inhibit NOB. Third, acid-tolerant AOB
grow in when the operational pH is low. In turn, the pH value can
decrease even further leading to the chemical production of large
amounts of volatile nitrogen compounds, especially nitric oxide
(Fumasoli et al., 2015). The main operational parameter is the pH
value. It directly influences the energy generation of the bacteria,
but it also determines (i) limitation effects by free ammonia and
carbonate and (ii) inhibition effects by free ammonia and nitrous
acid (Fumasoli, 2016). Keeping these effects apart and determining
the respective kinetic constants is challenging. Consequently,
mechanistic computer models can be a helpful tool to include all
effects and the necessary chemical and microbial processes
(Fumasoli, 2016). Jubany et al. (2005) showed that consecutive
dosage of nitrite and fitting the oxygen uptake rate can be used to
determine the kinetics of NOB in high-strength ammonia waste-
waters. This approach to experimental data collection is also
applied in our study in order to demonstrate our optimization
algorithm.

The next section describes the experimental data and the
applied optimization algorithm. Afterwards, results are shown and
discussed in separate sections. The major conclusions are summa-
rized at the end.

2. Materials and methods

2.1. Notation and symbols

The notation conventions applied in this study are given in

Table 1. All symbols used in this study are given in Table 2. In
addition, inequalities of the form x � y express that every element
in x is smaller or equal to the corresponding element in y, i.e.
x � y⇔cl : xl ¼ xðlÞ � yðlÞ ¼ yl. Similarly, we write for matrices
that X � Y⇔cl;m : Xl;m ¼ Xðl;mÞ � Yðl;mÞ ¼ Yl;m.

2.2. Assumed model structure and general problem statement

The parameter optimization method as developed in this work
applies to process models whose dynamics can be formulated as
follows:

_sðtÞ ¼ �qðsðtÞ; qÞ; sð0Þ ¼ 1 (1)

with s(t) the single state variable and q(s(t),q) a single rate
expression. The state variable can only take on nonnegative values
(s(t)�0) and the rate expression q(s(t),q) is nonnegative and non-
increasing in its parameters (q, dimensions: p � 1) over its whole
domain:

cs2ℝ�0;cq; q1; q22ℝp :

�
qðs; qÞ � 0

q1 � q2 ⇔ qðs; q1Þ � qðs; q2Þ (2)

The process state and/or the rate of change (s(t) and q(t)) are
measured through equations of the following form:
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(4)

bj2Uj3ℝ3
�0 j ¼ 1;…; J (5)

These measurement equations deliver Kj measurements ~yj;kj of J
measured variables yj;kj at sampling times tkj , where kj ¼ 1,…,Kj and
j ¼ 1,…,J. The measurement errors ej;kj are assumed to be sampled
independently from zero mean normal distributions with standard
deviations sj;kj . These standard deviations are assumed known. In

addition, the vectors bj ¼
�
bj;0 bj;1 bj;2

�T (j¼ 1,…,J) are bound to
belong to a subset of the nonnegative real space, Uj. These subsets
are assumed known and are required to be convex. The vectors q

and bj (j ¼ 1,…,J) constitute the parameters of the model and are to
be estimated.

2.3. Parameter estimation methods

2.3.1. Definition of optimality
We define optimal parameter estimation as maximum likeli-

hood estimation, that is, we aim to find the values for the param-
eters which maximize the likelihood. Let g denote the vector
containing all parameters:

g ¼
h
qT bT1 bT2 … bTj … bTJ

iT
(6)

and let h(g) be the negative log-likelihood function. The optimi-
zation problem is then:

bg ¼ argmin
g

hðgÞ (7)

Given assumptions and definitions discussed above, the nega-
tive log-likelihood corresponds to the following weighted least

Table 1
Notation conventions.

Notation Description

x, q Scalar
x, xm, q Column vector
xl, x(l) lth scalar element of vector x
Xl,m, X(l,m) Scalar element of matrix X at row l and column m
X Matrix
Xl,. lth row from matrix X
X.,m mth column from matrix X
~x Measurementbx Optimal estimate

x�; �x Relaxed estimate or value

xþ Positive part of x (max(x,0))
x� Negative part of x (min(x,0))
x Lower bound (h,hj,h1,h2), lower interval limit (q,s,q)
x Upper bound (h,hj,h1,h2), upper interval limit (q,s,q)
X Set of feasible solutions
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