SoftwareX 6 (2017) 54-62

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

galkin: A new compilation of Milky Way rotation curve data

Miguel Pato^{a,*}, Fabio Iocco^b

^a The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
^b ICTP South American Institute for Fundamental Research, and Instituto de Física Teórica - Universidade Estadual Paulista (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, SP, Brazil

ARTICLE INFO

Article history: Received 2 August 2016 Received in revised form 19 December 2016 Accepted 22 December 2016

Keywords: Dark matter Galaxy: kinematics and dynamics

ABSTRACT

We present galkin, a novel compilation of kinematic measurements tracing the rotation curve of our Galaxy together with a tool to treat the data. The compilation is optimised to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements carefully collected from almost four decades of literature. A simple, user-friendly tool is provided to select, treat and retrieve the full database.

© 2016 Published by Elsevier B.V.

Code metadata

Current code version	v1.0
Permanent link to code/repository used for this code version	https://github.com/ElsevierSoftwareX/SOFTX-D-16-00063
Legal Code License	GNU General Public License 3
Code versioning system used	Git
Software code languages, tools, and services used	Python
Compilation requirements, operating environments & dependencies	Python packages: matplotlib, numpy, wx (when using the graphic interface, see
	Section 3), astropy (if desired by the user, see Section 2.1)
If available Link to developer documentation/manual	None
Support email for questions	galkin.tool.mw@gmail.com

1. Motivation and significance

The rotation curve of a spiral galaxy provides far-reaching insight into its properties, as noticeably explored for decades now (see e.g. Refs. [1-5]). Data on the rotation curve of the Milky Way – a spiral itself – have also been available for several decades [6-11]. However, the data are rather disperse throughout the literature and groups of references are often neglected. We therefore set out to assemble a comprehensive compilation of the decades-long observational effort to pinpoint the rotation curve of the Milky Way. The compilation improves upon existing ones (e.g. Refs. [12,13]) on several aspects, including most notably: (i) an enlarged database of observations appropriately treated for unified use, and (ii) the release of a simple out-of-the-box tool to retrieve

* Corresponding author. *E-mail address:* migpato@gmail.com (M. Pato). the data.¹ This compilation has been first used in Ref. [14] and later adopted in other works in the literature — see Section 4 for more on the impact of galkin. Without venturing into any analysis of the Galactic structure or dynamics (as done in galpy [15]), here we provide instead a thorough description of the data sets as well as the features of an out-of-the-box tool to access the database and output the desired data for independent analyses. The open source code provided is simple, flexible and can be easily modified to include new data sets or other types of measurements. The latter feature is particularly relevant on the eve of the precision era soon to be introduced by the Gaia satellite [16] and an array of optical and near-infrared ground-based surveys such as APOGEE-2 [17,18], GALAH [19], WEAVE [20] and 4MOST [21]. Our compilation can be regarded as a step forward in unifying the current state of the art, yet it is certainly susceptible of further

¹ To download your copy of galkin, please refer to our GitHub page github.com/galkintool/galkin or contact us at galkin.tool.mw@gmail.com.

Table 1

The list of all kinematic measurements of the Milky Way included in galkin. For each reference, the range of Galactocentric radius is reported assuming $R_0 = 8$ kpc along with the Galactic quadrant(s) covered and the number of tracers selected out of the total original samples. In this context, the term "tracers" denotes observed objects or regions (i.e. terminal points, clouds, clusters, stars or masers) which allow for a measurement of the rotation curve of the Galaxy. For the sources signalled with \dagger , in addition to the line-of-sight velocities, we also process the measured proper motions.

Hiterminal velocities Image: Fich+ 38 [10] 2.1-8.0 1.4 149/149 Malhotra '95 [22] 2.1-7.5 1.4 110/110 McClure-Griffiths & Dickey '07 [23] 2.8-7.6 4 701/761 Hit thickness method 6.8-20.2 - 13/13 C0 terminal velocities - 13/13 284/284 Gas kinematics Knapp+ '85 [9] 0.6-7.8 1 284/245 Gas kinematics Knapp+ '85 [9] 0.6-7.8 1 37/37 Luna+ '06 [25] 2.0-8.0 4 272/457 Hil regions Bittiz '79 [6] 8.7-11.0 2.3 3/3 Fich+ '89 [10] 9.4-12.5 3 5/104 Turbide & Moffat '93 [26] 11.8-14.7 3 5/8 Brand & Bitz '93 [27] 5.2-16.5 1.2.3.4 148/206 Hou+ '09 [28] 6.0-13.7 1.2.3.4 148/206 Hou+ '09 [28] 6.0-13.7 1.2.3.4 245/278 Pont-4'94 [11] 5.1-14.4 1.2.3.4 245/278 Pont+ '9		Tracer type	R[kpc]	Quadrants	Tracers
Fich+'89[10] 2.1-8.0 1.4 149/149 Malhotra '95 [22] 2.1-7.5 1.4 110/110 McCure-Griffiths & Dickey '07 [23] 2.8-7.6 4 701/761 Honma & Sofue '97 [24] 6.8-20.2 - 13/13 C0 terminal velocities 9 1 142/142 Burton & Gordon '78 [7] 1.4-7.9 1 284/284 Clemens '85 [8] 1.9-8.0 1 143/143 Gas kinematics Knapp+'85 [9] 0.6-7.8 1 214/275 Hill regions 8 1 37/37 2.0-8.0 4 272/457 Blitz '79 [6] 8.7-11.0 2.3 3/3 5/104 22/2457 Blitz '99 [2] 1.8-14.7 3 5/8 5/104 272/457 Brand & Blitz '93 [27] 5.2-16.5 1.2.3.4 148/206 1404' '09 [28] 6.0-13.7 1.2.3.4 30/963 Hou+ '09 [28] 6.0-13.7 1.2.3.4 60/71 2.3.4 30/963 Star kinematics Open clusters †		HI terminal velocities			
Malhotra '95 [22] 2.1-7.5 1.4 110/110 McClure-Griffiths & Dickey '07 [23] 2.8-7.6 4 701/761 H1 thickness method Homma & Sofue '97 [24] 6.8-20.2 - 13/13 Co terminal velocities Burton & Gordon '78 [7] 1.4-7.9 1 284/284 Gas kinematics Knapp+ '85 [9] 0.6-7.8 1 37/37 Luna+ '06 [25] 2.0-8.0 4 272/457 HII regions Buitz '79 [6] 9.7-11.0 2.3 3/3 Fich+ '89 [10] 9.4-12.5 3 5/104 Turbide & Mofrat '93 [26] 1.18-14.7 3 5/8 Brand & Blitz '93 [27] 5.2-16.5 1.2.3.4 148/206 Hou+ '09 [28] 3.5-15.5 1.2.3.4 148/206 Hou+ '09 [28] 3.6-12.6 1.2.3.4 148/206 Hou+ '09 [28] 3.6-12.6 1.2.3.4 245/278 Pont+ 94 [11] 5.1-14.4 1.2.3.4 2/45/278 Pont+ 94 [13] 10.2-18.5 2.3.4 32/48	Gas kinematics	Fich+ '89 [10]	2.1-8.0	1, 4	149/149
McClure-Griffiths & Dickey '07 [23] 2.8-7.6 4 701/761 HI thickness method Homma & Sofue '97 [24] 6.8-20.2 - 13/13 CO terminal velocities Burton & Gordon '78 [7] 1.4-7.9 1 284/284 Gas kinematics Knapp+ '85 [9] 0.6-7.8 1 37/37 Luna+ '06 [25] 2.0-8.0 4 272/457 HII regions Blitz '79 [6] 8.7-11.0 2.3 3/3 Fich+ '89 [10] 9.4-12.5 3 5/104 Turbide & Moffat '93 [26] 11.8-14.7 3 5/8 Brand & Blitz '79 [6] 8.7-11.0 2.3 3/3 Giant molecular clouds Hou+ '09 [28] 3.5-15.5 1.2.3.4 148/206 Hou+ '09 [28] 6.0-13.7 1.2.3.4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6-10.7 1.2.3.4 245/278 Durand+ '98 [30] 3.6-12.6 1.2.3.4 245/278 Pont+ '97 [31] 10.2-18.5 2.3.4 32/48 Carbon stars Demeres		Malhotra '95 [22]	2.1-7.5	1, 4	110/110
Ht thickness method Honma & Sofue '97 [24] C0 terminal velocities Burton & Gordon '78 [7] Lama+ '06 [25] Biltz '79 [6] Biltz '79 [7] Biltz '79 [6] Biltz '79 [7] Biltz '70 [7] B		McClure-Griffiths & Dickey '07 [23]	2.8-7.6	4	701/761
Honma & Sofue '97 [24] 6.8–20.2 - 13/13 CO terminal velocities Burton & Gordon '78 [7] 1.4–7.9 1 284/284 Clemens %5 [8] 1.9–8.0 1 143/143 Gas kinematics Knapp+ %5 [9] 0.6–7.8 1 37/37 Luna+ '06 [25] 2.0–8.0 4 272/457 HII regions 8 7/1.0 2.3 3/3 Bitiz 79 [6] 8.7–11.0 2.3 3/3 Fich+ *89 [10] 9.4–12.5 3 5/104 Turbide & Moffat '93 [26] 11.8–14.7 3 5/8 Brand & Bitrz '93 [27] 5.2–16.5 1.2.3.4 148/206 Hou+ '99 [28] 6.0–13.7 1.2.3.4 274/815 Giant molecular clouds 1 10.2–18.5 2.3.4 274/815 Diarad+ '98 [30] 3.6–12.6 1.2.3.4 26/77 Pont+ '99 [11] 5.1–14.4 1.2.3.4 24/82 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1.2.3.4 32/48 Carbon		HI thickness method			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Honma & Sofue '97 [24]	6.8-20.2	-	13/13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CO terminal velocities			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Burton & Gordon '78 [7]	1.4-7.9	1	284/284
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Clemens '85 [8]	1.9-8.0	1	143/143
Luna+'06 [25] 2.0-8.0 4 272/457 Hill regions Bitiz '79 [6] 8.7-11.0 2.3 3/3 Fich+'89 [10] 9.4-12.5 3 5/104 Turbide & Moffat '93 [26] 11.8-14.7 3 5/8 Brand & Blitz '93 [27] 5.2-16.5 1.2,3,4 148/206 Hou+'09 [28] 3.5-15.5 1,2,3,4 274/815 Giant molecular clouds Hou+'09 [28] 6.0-13.7 1,2,3,4 30/963 Open clusters + Frinchaboy & Majewski '08 [29] 4.6-10.7 1,2,3,4 60/71 Planetary nebulae Durand+ '98 [30] 3.6-12.6 1,2,3,4 79/867 Star kinematics Classical cepheids Durand+ '98 [30] 3.6-12.6 1,2,3,4 245/278 Pont+'97 [31] 10.2-18.5 2,3,4 32/48 32/48 35/36 Masers † Reid+ '14 [34] 4.0-15.6 1,2,3,4 35/36 Masers † Reid+ '14 [34] 4.0-15.6 1,2,3,4 35/36 Masers † Reid+ '14 [34] 4.0-15.6		Knapp+ '85 [9]	0.6-7.8	1	37/37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Luna+ '06 [25]	2.0-8.0	4	272/457
Blitz '79 [6] 8.7-11.0 2,3 3/3 Fich + '89 [10] 9.4-12.5 3 5/104 Turbide & Moffat '93 [26] 11.8-14.7 3 5/8 Brand & Blitz '93 [27] 5.2-16.5 1, 2, 3, 4 148/206 Hou+ '09 [28] 3.5-15.5 1, 2, 3, 4 274/815 Giant molecular clouds		HII regions			
Fich+'89 [10] 9.4-12.5 3 5/104 Turbide & Moffat '93 [26] 11.8-14.7 3 5/8 Brand & Blitz '93 [27] 5.2-16.5 1, 2, 3, 4 148/206 Hou+ '09 [28] 3.5-15.5 1, 2, 3, 4 274/815 Giant molecular clouds Hou+ '09 [28] 6.0-13.7 1, 2, 3, 4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6-10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6-12.6 1, 2, 3, 4 79/867 Star kinematics Classical cepheids		Blitz '79 [6]	8.7-11.0	2, 3	3/3
Turbide & Moffat '93 [26] 11.8–14.7 3 5/8 Brand & Blitz '93 [27] 5.2–16.5 1, 2, 3, 4 148/206 Hou+ '09 [28] 3.5–15.5 1, 2, 3, 4 274/815 Giant molecular clouds Hou+ '09 [28] 6.0–13.7 1, 2, 3, 4 30/963 Masers Open clusters † Frinchaboy & Majewski '08 [29] 4.6–10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6–12.6 1, 2, 3, 4 79/867 Classical cepheids Pont+ '94 [11] 5.1–14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 0.2–18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1, 2, 3, 4 35/36 Masers Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Masers Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Fich+ '89 [10]	9.4-12.5	3	5/104
Brand & Blitz '93 [27] 5.2-16.5 1, 2, 3, 4 148/206 Hou+ '09 [28] 3.5-15.5 1, 2, 3, 4 274/815 Giant molecular clouds Hou+ '09 [28] 6.0-13.7 1, 2, 3, 4 274/815 Hou+ '09 [28] 6.0-13.7 1, 2, 3, 4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6-10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6-12.6 1, 2, 3, 4 79/867 Classical cepheids Pont+ '94 [11] 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 10.2-18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 80/103 Masers † Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Nu+ '13 [37] 7.9 4 1/30 <td>Turbide & Moffat '93 [26]</td> <td>11.8-14.7</td> <td>3</td> <td>5/8</td>		Turbide & Moffat '93 [26]	11.8-14.7	3	5/8
Hou+ '09 [28] Giant molecular clouds Hou+ '09 [28] 3.5–15.5 1, 2, 3, 4 274/815 Giant molecular clouds Hou+ '09 [28] 6.0–13.7 1, 2, 3, 4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6–10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6–12.6 1, 2, 3, 4 79/867 Star kinematics Classical cepheids Pont+ '94 [11] 5.1–14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 10.2–18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1, 2, 3, 4 35/36 Masers Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Masers Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 May '13 [37] 7.9 4 1/30		Brand & Blitz '93 [27]	5.2-16.5	1, 2, 3, 4	148/206
Giant molecular clouds Hou+ '09 [28] 6.0–13.7 1, 2, 3, 4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6–10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6–12.6 1, 2, 3, 4 60/71 Star kinematics Pont+ '98 [30] 3.6–12.6 1, 2, 3, 4 79/867 Classical cepheids Pont+ '97 [31] 10.2–18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1, 2, 3 55/103 Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Masers Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 11/52 Masers Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 11/152 Masers Bobylev & Bobylev '11 [36] 8.3 3 <th< td=""><td>Hou+ '09 [28]</td><td>3.5-15.5</td><td>1, 2, 3, 4</td><td>274/815</td></th<>		Hou+ '09 [28]	3.5-15.5	1, 2, 3, 4	274/815
Hou+ '09 [28] 6.0-13.7 1, 2, 3, 4 30/963 Open clusters † Frinchaboy & Majewski '08 [29] 4.6-10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6-12.6 1, 2, 3, 4 60/71 Star kinematics Pont+ '94 [11] Pont+ '97 [31] 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '94 [11] Pont+ '97 [31] 5.1-14.4 1, 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers Masers † Reid+ '14 [34] Honma+ '12 [35] 7.7-9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Giant molecular clouds			
Open clusters † Frinchaboy & Majewski '08 [29] 4.6-10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6-12.6 1, 2, 3, 4 79/867 Classical cepheids Pont+ '97 [31] 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 10.2-18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers Masers † Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 80/103 Masers 1 Reid+ '12 [35] 7.7-9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Hou+ '09 [28]	6.0–13.7	1, 2, 3, 4	30/963
Frinchaboy & Majewski '08 [29] 4.6–10.7 1, 2, 3, 4 60/71 Planetary nebulae Durand+ '98 [30] 3.6–12.6 1, 2, 3, 4 79/867 Classical cepheids Pont+ '94 [11] 5.1–14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 10.2–18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1–24.8 1, 2 35/36 Masers Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Masers Xu+ '12 [35] 7.7–9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Open clusters †			
Planetary nebulae Jurand+ '98 [30] 3.6-12.6 1, 2, 3, 4 79/867 Star kinematics Classical cepheids 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '94 [11] 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] 10.2-18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers Masers † Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 80/103 Moma+ '12 [35] 7.7-9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31	Star kinematics	Frinchaboy & Majewski '08 [29]	4.6-10.7	1, 2, 3, 4	60/71
Durand+ '98 [30] 3.6-12.6 1, 2, 3, 4 79/867 Star kinematics Classical cepheids Pont+ '94 [11] Pont+ '97 [31] 5.1-14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers Reid+ '14 [34] Honma+ '12 [35] 4.0-15.6 1, 2, 3, 4 80/103 Masers Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Planetary nebulae			
Star kinematics Classical cepheids Pont+ '94 [11] Pont+ '97 [31] 5.1–14.4 1, 2, 3, 4 245/278 245/278 Pont+ '97 [31] Carbon stars 10.2–18.5 2, 3, 4 32/48 Carbon stars 0 10.2–18.5 2, 3, 4 32/48 Masers Demers & Battinelli '07 [32] Battinelli+ '13 [33] 9.3–22.2 1, 2, 3 55/103 Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Masers Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Durand+ '98 [30]	3.6-12.6	1, 2, 3, 4	79/867
Star kinematics Pont+ '94 [11] Pont+ '97 [31] 5.1–14.4 1, 2, 3, 4 245/278 Pont+ '97 [31] Carbon stars 10.2–18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3–22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1–24.8 1, 2 35/36 Masers † Reid+ '14 [34] 4.0–15.6 1, 2, 3, 4 80/103 Honma+ '12 [35] 7.7–9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Classical cepheids			
Pont+ '97 [31] 10.2-18.5 2, 3, 4 32/48 Carbon stars Demers & Battinelli '07 [32] 9.3-22.2 1, 2, 3 55/103 Battinelli+ '13 [33] 12.1-24.8 1, 2 35/36 Masers † Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 80/103 Masers Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Pont+ '94 [11]	5.1-14.4	1, 2, 3, 4	245/278
Masers Masers Reid+'14 [34] Honma+'12 [35] 4.0-15.6 7.7-9.9 1, 2, 3, 4 80/103 80/103 Masers Masers † Reid+'14 [34] Honma+'12 [35] 7.7-9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+'13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Pont+ '97 [31]	10.2-18.5	2, 3, 4	32/48
Demers & Battinelli '07 [32] Battinelli+ '13 [33] 9.3–22.2 1.2.3 1,2,3 55/103 35/36 Masers † Reid+ '14 [34] Honma+ '12 [35] Stepanishchev & Bobylev '11 [36] Xu+ '13 [37] 4.0–15.6 7.7–9.9 1,2,3,4 80/103 Masers Honma+ '12 [35] Stepanishchev & Bobylev '11 [36] 8.3 3 3 1/1 Xu+ '13 [37] Bobylev & Bajkova '13 [38] 7.9.4 1,2,4 7/31		Carbon stars			
Battinelli+ '13 [33] 12.1-24.8 1,2 35/36 Masers † Reid+ '14 [34] 4.0-15.6 1,2,3,4 80/103 Honma+ '12 [35] 7.7-9.9 1,2,3,4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1,2,4 7/31		Demers & Battinelli '07 [32]	9.3-22.2	1, 2, 3	55/103
Masers † Reid+ '14 [34] 4.0-15.6 1, 2, 3, 4 80/103 Masers Honma+ '12 [35] 7.7-9.9 1, 2, 3, 4 11/52 Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1, 2, 4 7/31		Battinelli+ '13 [33]	12.1-24.8	1, 2	35/36
Reid+'14 [34] 4.0-15.6 1,2,3,4 80/103 Masers Honma+'12 [35] 7.7-9.9 1,2,3,4 11/52 Stepanishchev & Bobylev'11 [36] 8.3 3 1/1 Xu+'13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1,2,4 7/31	Masers	Masers †			
Masers Honma+'12 [35] 7.7-9.9 1,2,3,4 11/52 Stepanishchev & Bobylev'11 [36] 8.3 3 1/1 Xu+'13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7-9.4 1,2,4 7/31		Reid+'14[34]	4.0-15.6	1, 2, 3, 4	80/103
Masers Stepanishchev & Bobylev '11 [36] 8.3 3 1/1 Xu+ '13 [37] 7.9 4 1/30 Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Honma+ '12 [35]	7.7-9.9	1, 2, 3, 4	11/52
Xu+ '13 [37]7.941/30Bobylev & Bajkova '13 [38]4.7–9.41, 2, 47/31		Stepanishchev & Bobylev '11 [36]	8.3	3	1/1
Bobylev & Bajkova '13 [38] 4.7–9.4 1, 2, 4 7/31		Xu+'13 [37]	7.9	4	1/30
		Bobylev & Bajkova '13 [38]	4.7-9.4	1, 2, 4	7/31

inclusions — please see our own extensive caveats and notes throughout the manuscript. We encourage the community to adopt galkin and participate in its extension as new data sets arise.

2. Software description

The galkin compilation has three main categories of data: (i) *gas kinematics*, including HI terminal velocities [10,22,23], HI thickness [24], CO terminal velocities [7–9,25], HII regions [6,10,26–28], and giant molecular clouds [28]; (ii) *star kinematics*, including open clusters [29], planetary nebulae [30], classical cepheids [11,31], and carbon stars [32,33]; and (iii) *masers* [34–38]. Table 1 recaps the key features of each data set. Appendix A gives a full account of our data selection and treatment for each reference listed in Table 1.

Our compilation consists of 2780 tracers distributed in Galactocentric radius *R*, Galactic longitude ℓ and height *z* above Galactic plane as shown in Fig. 1. Each object is specified by its coordinates (ℓ , *b*), heliocentric distance *d* and heliocentric line-of-sight velocity v_h^{los} . The uncertainties on ℓ and *b* are largely subleading and hence neglected, whereas the uncertainties on *d* and v_h^{los} are taken from the original references (cf. details in Appendix A). In radio observations, it is customary to report measurements of v_h^{los} in terms of the line-of-sight velocity in the local standard of rest (LSR) v_{lsr}^{los} for a fixed peculiar solar motion (U, V, W) $_{\odot}$ (where the subscript \odot denotes a solar value). In these cases, we infer v_{los}^{los} by subtracting the peculiar solar motion used in the reference off the reported $v_{lsr,0}^{los}$ (cf. Appendix A). Once v_h^{los} is obtained, this is

summed to the adopted peculiar solar motion to get the final LSR line-of-sight velocity $v_{\rm lsr}^{\rm los}$. Each object has an associated measurement (ℓ , b, $d \pm \Delta d$, $v_{\rm lsr}^{\rm los} \pm \Delta v_{\rm lsr}^{\rm los}$). The corresponding Galactocentric radius follows from simple geometry as

$$R = (d^2 \cos^2 b + R_0^2 - 2R_0 d \cos b \, \cos \ell)^{1/2},\tag{1}$$

where R_0 is the distance of the Sun to the Galactic centre. Under the assumption of circular orbits, the angular circular velocity of the object ω_c is found by inverting

$$v_{\rm lsr}^{\rm los} = (R_0\omega_c - v_0)\cos b\,\sin\ell,\tag{2}$$

where v_0 is the local circular velocity. The uncertainties on d and v_{lsr}^{los} are propagated to R and ω_c , respectively. We shall also provide the familiar circular velocity $v_c \equiv R\omega_c$ and corresponding uncertainties, but note that the errors of R and v_c are strongly positively correlated, while those of *R* and ω_c are independent. All uncertainties currently implemented in galkin are symmetric following the information available in each reference; future data might provide the full distribution of observables, which would then be treated in upcoming versions of galkin and would be of great value for Bayesian studies. The procedure described above is common to all object types in Table 1, with some modifications in two cases. For terminal velocities, we set b = 0 and R = $R_0|\sin \ell|$ (or, equivalently, $d = R_0|\cos \ell|$) in Eqs. (1) and (2), and each measurement reads $(\ell, v_{lsr}^{los} \pm \Delta v_{lsr}^{los})$. For the HI thickness method, the measured quantity is $W \equiv R_0 \omega_c - v_0$ instead of v_{lsr}^{los} , so each data point is defined by $(R/R_0 \pm \Delta R/R_0, W \pm \Delta W)$, cf. Refs. [24,40]. We also process the proper motions μ_{ℓ^*}, μ_b

Download English Version:

https://daneshyari.com/en/article/4978376

Download Persian Version:

https://daneshyari.com/article/4978376

Daneshyari.com