
SoftwareX 6 (2017) 85–90

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Qudi: A modular python suite for experiment control and data
processing
Jan M. Binder a, Alexander Stark a,b, Nikolas Tomek a, Jochen Scheuer a, Florian Frank a,
Kay D. Jahnke a, Christoph Müller a, Simon Schmitt a, Mathias H. Metsch a,
Thomas Unden a, Tobias Gehring b, Alexander Huck b, Ulrik L. Andersen b,
Lachlan J. Rogers a,∗, Fedor Jelezko a,c

a Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
b Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby 2800, Denmark
c Center for Integrated Quantum Science and Technology (IQst), Ulm University, 89081, Germany

a r t i c l e i n f o

Article history:
Received 25 November 2016
Received in revised form
30 January 2017
Accepted 2 February 2017

Keywords:
Python 3
Qt
Experiment control
Automation
Measurement software
Framework
Modular

a b s t r a c t

Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory
experiments. It provides a structured environment by separating functionality into hardware abstraction,
experiment logic and user interface layers. The core feature set comprises a graphical user interface,
live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks,
configuration management, and data recording. Currently, the included modules are focused on confocal
microscopy, quantum optics and quantum information experiments, but an expansion into other fields is
possible and encouraged.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata
Current code version 0.6
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00092
Legal Code License GNU General Public License v3
Code versioning system used git
Software code languages, tools, and services used Python3
Compilation requirements, operating environments & dependencies Environment: Anaconda, Python 3.4+, Python packages: comtypes (Windows only),

cycler, fysom, gitpython, influxdb, IPython, jedi, jupyter-client, lmfit, lxml, manhole,
matplotlib, numpy, PyDAQmx, pycallgraph, pyqtgraph, PyQt4, qtconsole, qtpy,
RPi.GPIO (Raspberry Pi only), rpyc, ruamel.yaml, scipy, spidev (Linux only),
statsmodels, traitlets, visa, pywin32 (Windows only), zmq

If available Link to developer documentation/manual https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
Support email for questions qudi@uni-ulm.de

∗ Corresponding author.
E-mail address: lachlan.j.rogers@quantum.diamonds (L.J. Rogers).

http://dx.doi.org/10.1016/j.softx.2017.02.001
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.02.001
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.02.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00092
https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
mailto:qudi@uni-ulm.de
mailto:lachlan.j.rogers@quantum.diamonds
http://dx.doi.org/10.1016/j.softx.2017.02.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


86 J.M. Binder et al. / SoftwareX 6 (2017) 85–90

Software metadata
Current software version 0.6
Permanent link to executables of this version https://github.com/Ulm-IQO/qudi/releases/tag/v0.6
Legal Software License GNU General Public License v3
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies Environment: Anaconda, Python 3.4+, Python packages: comtypes (Windows only), cycler, fysom,

gitpython, influxdb, IPython, jedi, jupyter-client, lmfit, lxml, manhole, matplotlib, numpy, PyDAQmx,
pycallgraph, pyqtgraph, PyQt4, qtconsole, qtpy, RPi.GPIO (Raspberry Pi only), rpyc, ruamel.yaml,
scipy, spidev (Linux only), statsmodels, traitlets, visa, pywin32 (Windows only), zmq

If available, link to user manual — if formally published
include a reference to the publication in the reference list

https://ulm-iqo.github.io/qudi-generated-docs/html-docs/

Support email for questions qudi@uni-ulm.de

1. Motivation and significance

Modern scientific experiments typically rely on multiple hard-
ware devices working together in a coordinated fashion. In many
instances, the hardware devices are commercial products with
programming interfaces for direct control via custom software. The
unique combination of such devices is then specific to a given ex-
periment. Efficient control of such experiments requires software
that is capable of coordinating the operation ofmultiple devices. In
addition, data interpretation is facilitated by rapid data processing
and visualization.

These challenges are exemplified when studying color cen-
ters in diamond as solid state quantum emitters for sensing, spin
manipulation and quantum information technologies. It is typi-
cal for such experiments to be performed on a ‘‘home-built con-
focal microscope’’ [1–5]. As evidenced by the 2014 Nobel Prize in
Chemistry, these techniques have expanded beyond the context of
physics and now this kind of microscope is pushing advances in bi-
ology [6–8] and nanotechnology [9,10]. A wide range of hardware
is used for such experiments, but there is a paucity of mature and
flexible lab control software to operate the apparatus.

Here, we present Qudi, a Python software suite for controlling
complex experiments and managing the acquisition and process-
ing ofmeasurement data. Despite being developed in the context of
quantum optics laboratories, the core Qudi framework is broadly
applicable to many scenarios involving coordinated operation of
multiple experiment devices. The free and open-source nature of
Qudi makes it possible for anyone to use and modify the software
to fit their research needs, and the modular code design simplifies
this task. Qudi continues to be actively developed, but it is already
mature enough for reliable laboratory use [11].

2. Software description

2.1. Why Python?

Python was chosen as the programming language for Qudi be-
cause of its conceptual synergy with the goals of the project. As a
dynamic, strongly typed, scripting language, Python has become
a popular choice for scientific programming [12,13] as the impor-
tance of scientific software increases [14]. Python’s high level of
abstraction makes it human-readable and concise, providing a di-
rect advantage for laboratory programming typically performed
by scientists rather than dedicated software developers. Source
code availability under an open-source license, the built-in mod-
ular structure of Python and good community support lower the
initial hurdle to learn the language. Additionally, most laboratory
hardware has at least an application programming interface (API)
specified for the C programming language, which can be accessed
by Python.

Scripting languages cannot replace established compiled pro-
gramming languages for tasks where processing performance or
memory efficiency is required but they are very useful to glue
together different components in order to benefit from the ad-
vantages each of them can offer [15]. This is closely aligned with
the concept of Qudi ‘‘gluing’’ together various devices and control
methods for specific complex experiments.

2.2. Qudi design

TheQudi suite consists of a collection ofmodules that are loaded
and connected together by amanager component according to set-
tings given in a configuration file as shown in Fig. 1(a). The program
startup code and manager were initially derived from similar ele-
ments contained within the neurophysiology software ACQ4 [16].
Startup is initiated by a single executable python file, and theman-
ager component provides core functions for logging, error han-
dling, configuration reading, and remote access. Additionally, the
manager also administers the other modules by providing func-
tionality for module loading, module dependency resolution and
connection, concurrent execution and network access to modules
running on other computers. This core infrastructure makes it eas-
ier to rapidly develop modules for new experiments by providing
structure and starting points.

A typical Qudi session will proceed as follows. On startup, the
supervisor process, for example an IDE, creates a Qudi process. In
this Qudi process, themanager component reads the configuration
file, sets up the log file and loads the modules designated in the
startup section of the configuration file. Typically, the startup sec-
tion will – but does not have to – contain at least the Manager GUI
and the tray icon module. Laboratory operation and experiment
control are performed by science modules, which are specified in
the configuration file along with any hardware-specific parame-
ters. Science modules can be loaded for the desired measurement
from the Manager GUI or a Jupyter notebook. Some of the science
modules in Qudi were inspired by the pi3diamond software [3–5,
17–19].

The science modules are divided into three categories: hard-
ware interaction, experiment ‘‘logic’’, and user interface. These
categories and the relationships between them are illustrated in
Fig. 1(b). The division into hardware, logic, and interface represents
a clear separation of tasks that improves reliability and flexibility
of the Qudi code. It also simplifies the implementation of new ex-
perimentmodules. The fundamental three-fold distinction is at the
basis of Qudi’s adaptability, andmakes Qudi an experiment control
software in contrast to a general software framework.

2.2.1. Logic modules
Logic modules control and synchronize a given experiment.

They pass input parameters from the user interface to the
respective hardware modules, and process measurement data in
the desired way. These modules control the information exchange

https://github.com/Ulm-IQO/qudi/releases/tag/v0.6
https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
mailto:qudi@uni-ulm.de


Download	English	Version:

https://daneshyari.com/en/article/4978380

Download	Persian	Version:

https://daneshyari.com/article/4978380

Daneshyari.com

https://daneshyari.com/en/article/4978380
https://daneshyari.com/article/4978380
https://daneshyari.com/

