
SoftwareX 6 (2017) 135–140

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

solveTruss v1.0: Static, global buckling and frequency analysis of 2D
and 3D trusses with Mathematica
Hakan Ozbasaran
Eskisehir Osmangazi University, Department of Civil Engineering, Eskisehir, Turkey

a r t i c l e i n f o

Article history:
Received 31 January 2017
Received in revised form 16 May 2017
Accepted 17 May 2017

Keywords:
Truss
Buckling
Frequency
Mathematica

a b s t r a c t

Trusses have an important place amongst engineering structures due to many advantages such as high
structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which
require analysis of a large number of candidate structural systems such as size, shape and topology
optimization with stochastic methods, mostly lead the engineer to establish a link between the develop-
ment platform and external structural analysis software. By increasing number of structural analyses, this
(probably slow-response) linkmay climb to the top of the list of performance issues. This paper introduces
a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome
this problem for Mathematica users.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-17-00010
Legal Code License GNU general public license (http://www.gnu.org/copyleft/gpl.html)
Code versioning system used None
Software code languages, tools, and services used Wolfram Mathematica
Compilation requirements, operating environments & dependencies Wolfram Mathematica
If available Link to developer documentation/manual None
Support email for questions ozbasaran@ogu.edu.tr

1. Motivation and significance

Trusses are useful structures formed by connecting individual
straight barmembers at joints. These structural systems are loaded
from their joints and their response to acting loads emerge as axial
loads on the members. This favorable internal force distribution
allows one to construct long-span and light-weight structures such
as bridges, roofs, towers and cranes. Since members of the trusses
only carry axial loads, only two conditions may apply such as ten-
sion and compression. Therefore, analysis of truss structures and
dimensioning of their members are relatively simple compared to
other structural systems. In spite of their simple behavior, it is
not easy to design a structure with high benefit/cost ratio which
satisfies all of the requirements. In practice, engineers generally
use commercial finite element analysis (FEA) software packages

E-mail address: ozbasaran@ogu.edu.tr.

such as SAP2000 [1], ABAQUS [2] and ANSYS [3] for analysis and
design of structural systems. These software can perform static,
dynamic and buckling analyses of complex structure models in-
cluding trusses. Some of these software packages provide scripting
and application programming interfaces (API) compatible with
various programming languages.

Optimal design of trusses has become one of the most compet-
itive fields in structural engineering research in the last decades.
Optimization of trusses deals with searching for the optimal sec-
tions (size optimization), node coordinates (shape optimization)
and element information (topology optimization) while satisfy-
ing the design requirements. These design requirements, which
are called ‘‘constraints’’, may be limiting stresses, deflections, fre-
quencies etc. for the individual structural elements or the whole
structure. Since optimization algorithms may include advanced
mathematical operations, most researchers direct their attention
towards computer algebra systems which provide a development
platform and a built-in mathematical functions library.

http://dx.doi.org/10.1016/j.softx.2017.05.004
2352-7110/© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.05.004
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00010
http://www.gnu.org/copyleft/gpl.html
mailto:ozbasaran@ogu.edu.tr
mailto:ozbasaran@ogu.edu.tr
http://dx.doi.org/10.1016/j.softx.2017.05.004
http://creativecommons.org/licenses/by/4.0/


136 H. Ozbasaran / SoftwareX 6 (2017) 135–140

Truss optimization is generally an iterative process that re-
quires repetitive structural analysis of the candidate designs and
check of the constraint violations. Thousands of candidate designs
must be analyzed to obtain a near-optimal solution with most of
the stochastic optimization algorithms [4–13]. One second delay
in the analysis of one truss system causes a procedure of 10 000
truss analyses to last 2.78 hours longer. There are twomain choices
to perform the structural analyses. The first one is to establish a
link between the development platform and a structural analysis
software. Of course, it is necessary that the structural analysis
software has an interface for this purpose or it is able to read a text
input file which will be generated by the algorithm. The second
one is building a structural analysis procedure on the preferred
platform and calling it when needed which mostly provides faster
calculation.

The main purpose of the presented software is to perform
static, global member buckling and frequency analysis of 2D and
3D trusses within the Mathematica [14] development platform
(instead of using external software) to boost the performance of it-
erative truss analysis and design processes for Mathematica users.
The only package for Mathematica that the author can find in the
literature is developed by Zamiatina [15] in 1999 for static anal-
ysis of structures. solveTruss calculates joint deflections, internal
forces, elastic critical global buckling loads and demand/capacity
ratios of the members. It determines possible failure modes of
the members and natural periods of the structure. It also presents
useful information such as total volume of the material used and
total penalty of the design under a given loading case. Following
part describes the software and the input format.

2. Software description and input format

The solveTruss software uses the Mathematica platform, which
is a widely used computer algebra system. It is constructed as
procedures in order to provide an easy-to-implement code. ‘‘sol-
veTruss2D’’ is for plane trusses and ‘‘solveTruss3D’’ is for spatial
trusses of which parameters are the same as follows;
solveTruss2D[{E, ν, σa, δa, λa} , joints, sections, bars,

supports, forces, masses, mode] 2D

solveTruss3D[{E, ν, σa, δa, λa} , joints, sections, bars,

supports, forces, masses, mode] 3D

(1)

where, E is Young’s modulus, ν is Poisson’s ratio, σa is allowed
absolute stress, δa is allowed absolute deflection for joints in global
directions and λa is allowed eigenvalue for buckling analysis. The
rest are the lists which describe the structure geometry, loading
conditions and requested natural periods. The coordinates of the
joints are defined by the ‘‘joints’’ variable as given below;

joints = {{joint ID, ẋ, ẏ} , . . . , . . .} 2D
joints = {{joint ID, ẋ, ẏ, ż} , . . . , . . .} 3D.

(2)

It can be seen from the Eq. (2) that the structure of the ‘‘joints’’
list varies due to if the system is planar or spatial. The same
notation is used in the further text for 2D and 3D procedures.
joint ID is the joint label. ẋ, ẏ and ż are the Cartesian coordinates
of the joint with respect to the global coordinate system. Origin
and orientation of the global coordinate system can be freely set
by the user. The ‘‘sections’’ variable defines the sections and their
properties (Eq. (3)).

sections =
{{

section ID, A, Ix, Iy, It , Iw, {x0, y0}
}
, . . . , . . .

}
(3)

where, section ID is the section label, A is the section area, Ix and
Iy are the moments of inertia about x and y principal centroidal
axes of the section, respectively. It is the torsional constant, Iw

Fig. 2.1. An unsymmetrical cross section (GC: center of mass, SC: shear center).

is the warping constant and finally, x0 and y0 are the distances
between center of mass (GC) and shear center (SC) in the x and
y directions (Fig. 2.1). Note that the moments of inertia about
the principal centroidal axes, torsional and warping constants and
relative shear center location information are requested in addition
to section area. Hence, these properties are required for global
buckling analysis of the bars (see [16–18] for details).

The variable ‘‘bars’’ provides the element and connectivity in-
formation. In truss structures each element connects a joint to an-
other. These joints are represented by start joint ID and end joint ID
in the ‘‘bars’’ list. section ID assigns the corresponding section to the
member labeled with bar ID (see Eq. (4)).

bars
= {{bar ID, section ID, start joint ID, end joint ID} , . . . , . . .} . (4)

The variable ‘‘supports’’ is for the restraint conditions as given
in Eq. (5).

supports =
{{

joint ID, resẋ, resẏ
}
, . . . , . . .

}
2D

supports =
{{

joint ID, resẋ, resẏ, resż
}
, . . . , . . .

}
3D.

(5)

In Eq. (5), resẋ, resẏ and resż are the restraint conditions for
displacements in the ẋ, ẏ and ż directions, respectively which take
the value 1 for ‘‘restrained’’ and 0 for ‘‘free’’ cases. The variable
‘‘forces’’ contains external force data of which structure is similar
to ‘‘supports’’ list (Eq. (6)).

forces =
{{

joint ID, Fẋ, Fẏ
}
, . . . , . . .

}
2D

forces =
{{

joint ID, Fẋ, Fẏ, Fż
}
, . . . , . . .

}
3D

(6)

where, Fẋ, Fẏ and Fż are the forces acting in the ẋ, ẏ and ż directions,
respectively. solveTruss does not convert the forces to masses.
Masses should be entered separately in the variable ‘‘masses’’ to be
considered in the frequency analysis (Eq. (7)).

masses =
{{

joint ID,mẋ,mẏ
}
, . . . , . . .

}
2D

masses =
{{

joint ID,mẋ,mẏ,mż
}
, . . . , . . .

}
3D.

(7)

Finally, the variable ‘‘mode’’ provides the number of the re-
quested natural periods (rm), lower (TA) and upper limit (TB) of the
allowed natural period region (Eq. (8)). If rm is set to 0, frequency
analysis will not be performed.

mode = {rm, TA, TB} . (8)

It should be noted that it is not necessary to provide the lists
ordered by labels (joint ID, section ID etc.). However, labels should
be given starting from 1 and without skipping any number.

3. Structure and output

solveTruss uses the direct stiffness method to calculate joint
deflections, which is very appropriate for programming. After the



Download English Version:

https://daneshyari.com/en/article/4978388

Download Persian Version:

https://daneshyari.com/article/4978388

Daneshyari.com

https://daneshyari.com/en/article/4978388
https://daneshyari.com/article/4978388
https://daneshyari.com

