
SoftwareX 6 (2017) 193–197

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

featsel: A framework for benchmarking of feature selection
algorithms and cost functions
Marcelo S. Reis a,b,*, Gustavo Estrela b,c, Carlos Eduardo Ferreira c, Junior Barrera b,c

a Laboratório Especial de Ciclo Celular, Instituto Butantan, Brazil
b Center of Toxins, Immune-response and Cell Signaling (CeTICS), Instituto Butantan, Brazil
c Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 18 April 2017
Received in revised form 18 July 2017
Accepted 19 July 2017

Keywords:
Feature selection
Benchmarking
Boolean lattice
Combinatorial optimization

a b s t r a c t

In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost
functions. This framework allows the user to deal with the search space as a Boolean lattice and has its
core coded in C++ for computational efficiency purposes.Moreover, featsel includes Perl scripts to addnew
algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables.
Besides, this framework already comes with dozens of algorithms and cost functions for benchmarking
experiments. We also provide illustrative examples, in which featsel outperforms the popular Weka
workbench in feature selection procedures on data sets from the UCI Machine Learning Repository.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Code metadata description
Current code version v1.3.
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-17-00031
Legal Code License GNUGeneralPublicLicensev3
Code versioning system used git.
Software code languages, tools, and services used C++, Perl
Compilation requirements, operating environments & dependencies C++ compiler, make, Perl interpreter, gnuplot, flex (optional), bison

(optional), groff (optional)
Link to developer documentation/manual github.com/msreis/featsel/wiki
Support email for questions marcelo.reis@butantan.gov.br

1. Motivation and significance

In the context of Machine Learning and Statistics, feature selec-
tion is a procedure to select, from a set S of features, a subset X ⊆ S
such thatX contains themost relevant features for a given classifier
design process. If the relevance of X can be measured through a
cost function c : P(S) → R+, then feature selection is reduced to a
combinatorial optimization problem called feature selection prob-
lem, in which the objective is to minimize c(X). It is a well-known
fact that the feature selection problem is NP-hard [1]; however, in
situations where a cost function c measures an estimation error
and is computed with a fixed number of samples, a property of c
arises due to the ‘‘curse of dimensionality’’: adding new features to
the considered subset X decreases the estimation error c(X), until

* Correspondence to: Avenida Vital Brasil, 1500. ZIP 05503-900, São Paulo,
Brazil.

E-mail address:marcelo.reis@butantan.gov.br (M.S. Reis).

the point that the limitation of samples increases c(X), resulting
in a chain of subsets whose graph describes a U-shaped curve. This
observation is taken into account in a special case of the feature se-
lection problem: given an instance ⟨S, c⟩, if for every X ⊆ Y ⊆ Z ⊆

S it holds that c(Y ) ≤ max{c(X), c(Z)}, then ⟨S, c⟩ is also an instance
of the U-curve problem [2]. Although the U-curve problem is also
NP-hard [3], many feature selection algorithms rely on strategies
that model the search space as an instance of this problem: among
them there are suboptimal algorithms (i.e., algorithms that do not
guarantee finding a global minimum) like the sequential forward
search (SFS) [4], and also optimal ones, which include the U-Curve
Search (UCS) algorithm [5]. However, in practical feature selection
instances, subset chains do not have perfect U-shaped curves, since
such chains often present oscillations (i.e., one or more violations
of the U-shaped curve assumption). Depending the level of these
oscillations, only an exhaustive search could guarantee a global
minimum, though there are some suboptimal algorithms thatwere

http://dx.doi.org/10.1016/j.softx.2017.07.005
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.07.005
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.07.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00031
https://www.gnu.org/licenses/gpl.html
https://github.com/msreis/featsel/wiki
mailto:marcelo.reis@butantan.gov.br
mailto:marcelo.reis@butantan.gov.br
http://dx.doi.org/10.1016/j.softx.2017.07.005
http://creativecommons.org/licenses/by/4.0/


194 M.S. Reis et al. / SoftwareX 6 (2017) 193–197

designed to circumvent that issue; one example is the Best-First
Search (BFS) [6].

Nonetheless, different choices for the cost function c impact on
the performance of a feature selection algorithm. For example, in
instances whose chains of subsets have a tendency of decreasing
cost toward a global minimum (a condition that can be approx-
imated by the Hamming distance cost function [3]), then greedy
strategies such as SFS would be good choices for feature selection.
However, if the instances have their global minima distributed
throughout the search space and their chains describe a perfect U-
shaped curve, then algorithms such as UCS would be suitable for
an optimal search. Moreover, if these instances have oscillations
in their chains (which occurs when the mean conditional entropy
is used to estimate morphological operators [7]), then algorithms
such as BFS, whose dynamics includes backtracking, could be em-
ployed for a suboptimal search.

Once suitable choices of both the cost function and the algo-
rithm have relevant impact on the performance of the feature
selection procedure, new approaches have been continually pro-
posed. However, generally these new algorithms and/or cost func-
tions are introduced with their own implementations, and very
often using different programming languages and/or data struc-
tures, which makes difficult experimental benchmarking of them.
This is aggravated in situations where constant and/or polynomial
factors associated to the implementation are not overwhelmed by
the asymptotic complexity of both algorithm and cost function.
Moreover, general-purpose Machine Learning workbenches that
offer feature selection procedures either are not designed to al-
low the inclusion of new algorithms and cost functions (e.g., the
MLC++ library [8]) or are not implemented taking into account the
mitigation of the aforementioned constant factors (e.g., the Weka
workbench [9]). Therefore, there is a need for an efficient, stan-
dardized environment to allow easily programming and testing of
different algorithms and cost functions, especially to compare new
proposed solutions with well-established ones, the so-called ‘‘gold
standards’’.

In this paper, we introduce featsel, an open-source framework
for benchmarking of feature selection algorithms and cost func-
tions. The core of this framework was coded in C++ and allows the
user to deal with the search space as a Boolean lattice (P(S), ⊆
); this property is very helpful, since a subset X of the set of
features S can be efficiently described as a characteristic vector of
X , thus allowing the application of Boolean operations. Moreover,
featsel includes auxiliary Perl scripts to minimize the efforts in
adding new algorithms and/or cost functions, generating random
instances, plotting graphs and organizing the benchmarking re-
sults into both LaTeX and hypertext markup language (HTML)
tables. The framework is under GNUGPLv3license and is avail-
able for download at github.com/msreis/featsel. The remainder
of this paper is organized as follows: in Section 2, we make a
high-level description of the framework’s main features and list
the algorithms and cost functions that are already available in
this release(v1.3). In Section 3, we present the overall software
architecture,which includes a pictorial component overviewof the
system through a class diagram and description of its main classes.
In Section 4, we show some illustrative examples in which, for
data sets of different sizes, the performance of featsel is compared
against the one of the Weka workbench. In Section 5, we indicate
the expected impact of this framework, both within and without
the Machine Learning academic community. Finally, in Section 6,
we make some conclusion remarks about this work and point out
ideas for future improvements.

2. Software description

featsel is a framework designed to assist systematic compar-
isons among feature selection algorithms and cost functions: for
a given cost function, each algorithm is executed against one or
more sets of instances of same type (e.g., with same number of
features), and the obtained results are averaged and organized
into a summary table. The execution of a single feature selection
procedure is provided by the framework core (main program); this
core is wrapped by a main auxiliary script, which is responsible
to launch each of the algorithm executions, to organize the results
and to generate the output files.

The core of featsel was designed through class-based, object-
oriented modeling. The chosen object-oriented programming lan-
guage to code the core was C++. Since benchmarking is our main
objective, from the computational efficiency point of view, C++ has
a better payoff in comparison with interpreted languages such as
Java, which is relevant to reduce constant factors that could impact
the comparison among algorithms and cost functions.

The main auxiliary script was coded in Perl, and offers to the
user the possibility for using instances stored in a temporary input
directory or generating random instances through customizable
modules. There are also other Perl scripts to assist the inclusion and
the removal of algorithms and cost functions. In Supplementary
Material Section 2, we provide detailed examples of how to use
all those scripts; additional information can be obtained at featsel’
suserguide, which is available online at the project’srepository.

This frameworkrelease(v1.3) includes implementation of dozens
of algorithms and cost functions,which are all listed in Tables 1 and
2.

3. Software architecture

As we have described in the previous section, the frame-
work core was designed under the object-oriented programming
paradigm. The main object interactions in the core are as follows:
Features are elements of the system; the aggregation of several
elements yields a set, while each set can be associated to a subset
of it; subsets can be aggregated into collections of subsets, and
also are associated to cost functions; solvers are composed of
collections of subsets (e.g., to store lists of visited subsets) and
of a cost function to compute a subset cost. Both cost function
and solver are abstract classes, which means they serve as a basis
for concrete implementations of cost functions and algorithms,
respectively.

In Fig. 1, we summarize these interactions into a class diagram,
which contains six main classes. The most relevant properties of
these classes are discussed below.
Element. This class represents a feature, and has attributes and
methods to store and retrieve its relevant properties. For example,
if a feature consists in a pixel of a window during a morphological
operator estimation using k samples, then an object of this class
stores an array of k integers, each one corresponding to the ob-
served value for that pixel in each of those samples.
ElementSet. An aggregation of elements that compose the complete
set S considered during the feature selection procedure. This class
has methods to load element data of a given set S from either dat
(flat file) or xml (extended markup language) instance files. To
this end, it relies on auxiliary parser classes DatParserDriver and
XmlParserDriver, respectively.
ElementSubset. A subset X of a complete set S is represented as
an instance of this class, which is used to explicitly represent its
corresponding node in the search space and also to compute the
cost of X . The subset representation is accomplished through the

https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/msreis/featsel
https://github.com/msreis/featsel/releases/tag/v1.3
https://github.com/msreis/featsel/wiki
https://github.com/msreis/featsel/wiki
https://github.com/msreis/featsel/wiki
https://github.com/msreis/featsel
https://github.com/msreis/featsel/releases/tag/v1.3


Download English Version:

https://daneshyari.com/en/article/4978398

Download Persian Version:

https://daneshyari.com/article/4978398

Daneshyari.com

https://daneshyari.com/en/article/4978398
https://daneshyari.com/article/4978398
https://daneshyari.com

