
Available online at www.sciencedirect.com

ScienceDirect

SoftwareX () –
www.elsevier.com/locate/softx

Ocelet: Simulating processes of landscape changes using interaction graphs

P. Degenne, D. Lo Seen∗

Cirad, Environment and Societies Department, UMR TETIS, Montpellier, France

Received 9 February 2016; received in revised form 6 April 2016; accepted 10 May 2016

Abstract

This paper introduces Ocelet, a domain specific language and simulation tool for modelling changes in geographical landscapes. It is
characterised by the use of interaction graphs (graphs with interaction functions on their edges) to represent the system as composed of processes,
each involving several entities distributed in space that are in interaction with each other. Entities are the vertices of the graphs, and interactions
are the edges on which (interaction) functions can be applied to make the system change through time. Examples are given to illustrate the generic
disposition of the simulation approach to model and study changing geographical setups.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Keywords: Spatial modelling; Multi-scale; Domain specific language

Code metadata

Current code version v1.1
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00024
Legal Code License CeCILL v2.1(GNU GPL compatible Free Software licence agreement

designed byFrench Public Research Institutes)
Licence detailed information:
http://www.cecill.info/licences/Licence CeCILL V2.1-en.html

Code versioning system used Git
Software code languages, tools, and services used Java 7, Eclipse, Xtext
Compilation requirements, operating environments & dependencies Development and compilation : Eclipse Luna, Java 7

Dependencies : Eclipse RCP, Xtext-XBase 2.8, Geotools 9.4, JAK
If available Link to developer documentation/manual NA
Support email for questions ocltdev@ocelet.fr

Software metadata

Current software version Carmine (1.1)
Permanent link to executables of this version Download tab on http://www.ocelet.org/
Legal Software License CeCILL V2.1
Computing platforms/Operating Systems Linux, OS X, Windows
Installation requirements & dependencies Java 7 (or 8) Runtime Environment
If available, link to user manual - if formally published include a reference to the
publication in the reference list

Documentation tab on http://www.ocelet.org/

Support email for questions ocltdev@ocelet.fr

∗ Corresponding author.
E-mail addresses: loseen@teledetection.fr, danny.lo seen@cirad.fr

(D. Lo Seen).

1. Motivation and significance

Simulation models are used both as research tools, to test
hypotheses when trying to improve the understanding of a

http://dx.doi.org/10.1016/j.softx.2016.05.002
2352-7110/ c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.
0/).

http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2016.05.002
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00024
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html
http://www.ocelet.org/
http://www.ocelet.org/
mailto:loseen@teledetection.fr
mailto:danny.lo_seen@cirad.fr
http://dx.doi.org/10.1016/j.softx.2016.05.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 P. Degenne, D. Lo Seen / SoftwareX () –

system, and in decision support, to explore alternative scenarios
(e.g. [1]). But modelling the environment as a system can be
considered particularly challenging as several interacting pro-
cesses often need to be modelled. These processes can also
be dynamic, spatially distributed, at several scales of space
and time, and may involve human activities [2]. Several re-
views of available methods for modelling the environment exist
(e.g. [3–5]). Most of the methods belong to three main ap-
proaches that stand out by the size of their user communities:
Systems Dynamics (SD), Cellular Automata (CA) and Agent-
based modelling (ABM). The SD approach proposed by For-
rester [6,7] represents real-world processes in terms of stocks
(system variables), flows (exchanges between stocks) and in-
teracting feedback loops (an output of the system can be fed
back as input to the system). Examples of software based on
these principles include STELLA [8] and Vensim [9]. But
when a system is distributed in a geographical space, aggre-
gated system variables become inadequate. The solution pro-
posed by the Spatial Modelling Environment (SME—[26]) was
to disaggregate the system space into cells. Stock-flow models
could then be included in each of the cells, with neighbour-
ing cells able to exchange flows. Referred to as “individual-
based modelling approaches”, CA and ABM are inherently
different in that aggregate patterns emerge from the sum of in-
dividual behaviour [10]. With CA, geographical space is rep-
resented by grid cells that can take a finite number of states.
The state of a given cell changes following transition rules that
depend on the states of the neighbouring cells. Urban dynam-
ics is a field where CA application has been particularly suc-
cessful (e.g. DEUM—[11]; SLEUTH—[12], and more recently
O’Sullivan, 2001; [13]). When the system to be modelled in-
volves heterogeneous entities in more complex situations such
as those in social systems, ABM is generally preferred. Agents
are defined by their behaviour, can be reactive or cognitive, and
interact with other agents and their environment [14]. A review
of the use of ABM in ecosystem management can be found in
[15]. Software for multi-agent simulations includes CORMAS
(Bousquet et al., 1998), NetLogo [16] and GAMA [17].

All three modelling approaches have specific characteristics
that can be considered merits or weaknesses depending on the
objectives sought. In particular, modellers often need to study a
system as a whole, and at the same time decipher how local and
intermediate level processes sum up to form the whole system.
It is therefore not surprising that there have been attempts to
mix or integrate the different approaches. For example, the
SME mentioned above can be considered an integration of
SD and CA, whereas Clarke [10] explored the origins and
key respective contributions of CA and ABM. Schieritz and
Milling [18] carried out a detailed comparison of SD and ABM,
and reflected on previous promising but still unfulfilled attempts
to combine top-down (SD) and bottom-up (ABM) approaches.
Since 2008, we have been developing an approach that can
be considered intermediate between top-down and bottom-up
approaches. The rationale was not to integrate the two types of
approaches but rather to focus on their “common denominator”
that are the interactions. Any system is described in terms of
entities distributed in space that are in interaction with each

other, and simulation models of geographical changes are built
using interaction graphs to explicitly describe processes [19].
The interaction graphs have entities as vertices, and interaction
functions attached to their edges. A graph alone can only
structure the neighbourhood relationships in a system (which
entity is in relation with which other entity) and not the nature
of the relations (what happens when entities interact). Nor does
it describe how the system evolves with time. Interaction graphs
were thus introduced as an extension to the mathematical
definition of graphs by allowing (interaction) functions to be
applied on the edges simultaneously [20]. These functions are
able to access the properties of the entities connected, use
and optionally change them, according to the processes being
modelled. The interaction graphs are also dynamic in the sense
that vertices and edges can be added or removed, and their
properties modified during the simulation.

When modelling a system and its dynamics using interac-
tion graphs, one has to imagine what interactions are at play
in the system, how they are distributed (spatially, functionally,
socially. . .) and how they can influence the temporal evolution
of that system. Such a definition of an interaction graph is very
generic. One same concept is used to describe hierarchical rela-
tionships (allowing aggregation and disaggregation operations),
spatial relationships (from regular grid based neighbourhood, to
any other structure issued from vector based geographic infor-
mation layers or from a continuous spatial reference system),
social relationships (by writing socially meaningful semantics
in the interaction functions), or more generally any kind of
functional based relationship. We combine this genericity with
well-chosen operators in the form of a Domain Specific lan-
guage (see [21], for a review of DSL in ecological modelling)
to offer a rich capacity of expression for modelling a wide range
of spatially explicit systems and their dynamics. The gener-
ally spatial entities used in Ocelet models are represented with
data types that are commonly used in Geographical Informa-
tion Systems (GIS): points, lines, polygons, multi-points, multi-
lines and multi-polygons. Interactions between entities result in
changes in the state and (spatial) configuration of the entities.
The key difference is that, once imported from a GIS data file
(e.g. shapefile) into the model, the entities no longer belong to
a “GIS layer”, and can be interconnected individually through
several interaction graphs.

Spatial dynamics models are built within a software environ-
ment called the “Ocelet Modelling Platform” (OMP). After a
few years of practice and the transition phase between the initial
prototype and the current stabilised version of Ocelet (version
1.1), we hereby (Section 2) present the main concepts and fea-
tures of the software. Three test cases are then briefly described
to illustrate the generic disposition of Ocelet (Section 3). Fi-
nally, we discuss how the approach can contribute to address
scientific questions and also what are the main types of mod-
elling situations that can be tackled (Section 4).

2. Software description

The OMP software environment is built around the Ocelet
DSL in order to facilitate model creation and maintenance, code

Download	English	Version:

https://daneshyari.com/en/article/4978429

Download	Persian	Version:

https://daneshyari.com/article/4978429

Daneshyari.com

https://daneshyari.com/en/article/4978429
https://daneshyari.com/article/4978429
https://daneshyari.com/

