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Abstract

PiCO QL is an open source C/C++ software whose scientific scope is real-time interactive analysis of in-memory data through SQL queries.
It exposes a relational view of a system’s or application’s data structures, which is queryable through SQL. While the application or system is
executing, users can input queries through a web-based interface or issue web service requests. Queries execute on the live data structures through
the respective relational views. PiCO QL makes a good candidate for ad-hoc data analysis in applications and for diagnostics in systems settings.
Applications of PiCO QL include the Linux kernel, the Valgrind instrumentation framework, a GIS application, a virtual real-time observatory of
stellar objects, and a source code analyser.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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Code metadata

Current code version v11
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-15-00086
Legal Code License Apache 2.0
Code versioning system used Git
Software code languages, tools, and services used C/C++, Ruby
Compilation requirements, operating environments &
dependencies

GCC/G++, Ruby interpreter, Unix-like system: autotools

If available Link to developer documentation/manual https://github.com/ElsevierSoftwareX/SOFTX-D-15-00086/blob/PiCO QL-
application-release/README.mediawiki

Support email for questions mfg@aueb.gr

Software metadata

Current software version 1.1
Permanent link to executables of this version https://github.com/ElsevierSoftwareX/SOFTX-D-15-00086
Legal Software License Apache 2.0
Computing platform/Operating System Linux, OS X, Unix-like, web based
Installation requirements & dependencies Ruby, SQLite3, SWILL, Boost (optional)

If available, link to user manual — if formally published
include a reference to the publication in the reference list

https://github.com/ElsevierSoftwareX/SOFTX-D-15-00086/blob/PiCO QL-
application-release/README.mediawiki

Support email for questions mfg@aueb.gr
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1. Motivation and problem description

Many software applications depend on efficient data
processing and analysis. Whether it is GPS data produced by
hand-held devices or astronomy data produced by enhanced
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telescopes, the availability of more data is pushing the bar of
data processing requirements higher.

A common solution to this challenge is to keep data in mem-
ory for efficient processing. Advances in memory hardware
capacity help this situation: 8 GB of memory is common in
personal laptops, 16 GB is very feasible, and sophisticated
server machines exist with 125 GB. On the software end, gen-
eral purpose programming languages provide (a) main memory
data structures that can express sophisticated relationships and
(b) efficient algorithms to apply operations on them.

What many general purpose programming languages
are missing however is an expressive query language for
sophisticated data analysis and an interpreter to shorten the
query life cycle towards a data base interface experience.
Database management systems (DBMS), on the other hand,
require an expensive model transformation and unnecessary
dependencies when it only comes to querying program data.

We propose another path where it is possible to write and
execute interactive ad-hoc queries on program data structures at
runtime. Queries are input in a high-level language suitable for
data analysis through a web interactive interface or web-service
and executed in place on the application’s data structures.
This is PiCO QL, an SQL relational interface for querying
C/C++ program objects. Notably, PiCO QL does not impose any
transformation to the native object model, which falls under
the object-relational mapping problem [1]; it only provides a
queryable relational view on top of it.

2. Use preparation

Prior to use with an application, PiCO QL requires a one-off
setup process that includes three tasks:

1. Register each data structure with PiCO QL using a simple
method call within the application’s code and start the query
library using another method call.

2. Write a relational representation of the selected data
structures in PiCO QL’s domain specific language (DSL),
which resembles relational table definitions. A detailed
description of the relational representation and the DSL is
available in Ref. [2]. A number of applied examples are
present in PiCO QL’s codebase1 and the project’s wiki pages
highlight the installation and application plugin process.2

3. Compile the application together with PiCO QL by linking to
the PiCO QL library.

Fig. 1 depicts the steps of the setup process.

3. Software architecture

Fig. 2 depicts PiCO QL’s software architecture. It consists
of: the PiCO QL API as described in the previous section,
the SQLite [3] database query engine, an implementation of

1 https://github.com/mfragkoulis/PiCO QL/tree/ (a) PiCO QL-application-
release/examples (b) PiCO QL-kernel-release/src/Linux-kernel-mod (c)
PiCO QL-Valgrind-release/src/Valgrind-mod.

2 https://github.com/mfragkoulis/PiCO QL/wiki/Quickstart.

SQLite’s virtual table API, a source-code compiler or generator,
and a web interface module.

SQLite is an embeddable open source relational database
system that supports SQL ANSI92. It features a virtual table
module, which provides users with the building blocks for
attaching arbitrary data sources to SQLite’s query engine. Data
sources can benefit from the relational facet by implementing
SQLite’s virtual table API. Because SQLite is embeddable, it is
appropriate for use as a query interface plugin to applications.

PiCO QL implements SQLite’s virtual table API in order to
present a relational query interface to object-oriented program
data. The virtual table API implementation splits in two parts.
The one part concerns API methods fixed for all applications,
such as the ones that open or close a virtual table. The other
part implements the API methods specific to each application.
These carry out query processing operations, such as searching
a virtual table or returning a column of it. Because virtual tables
mirror program data structures, the query processing methods
have to be generated according to the data structures at hand.

The source code generator or meta-programming module,
which is implemented in Ruby, takes a specification of virtual
tables linked to an application’s data structures and generates
the implementation of the query processing methods. The
virtual table specification, which is written in the PiCO QL DSL,
resembles relational table definitions.

The web interface module uses the SWILL [6] library for
passing query input from the web interface, which is presented,
e.g., at port 8080 of localhost, to the SQLite engine. The inter-
face hosts the schema of the relational representation to facili-
tate query input.

4. Applications of PiCO QL

We have used PiCO QL both in system settings and
application domains. Within systems, PiCO QL serves as an ad-
hoc diagnostic tool with a high-level programming language.
We tested its capabilities within the Linux kernel and the
Valgrind instrumentation framework. We also embedded PiCO

QL in three applications of different domains [2]. QLandKarte
is a GIS application that visualises GPS data, such as bike or
running routes. The second one, Stellarium, is a virtual real
time observatory of stellar objects. Finally, CScout [4] is a
source code analyser and refactoring browser for collections
of C applications. Three queries, one for each application, are
presented in the last three rows of Table 1.

The application of PiCO QL [5] in the Linux kernel is inter-
esting from a number of standpoints. A wealth of kernel data
structures is in our disposal, such as the list of processes, files,
and devices in the system. The challenge is to combine data
structures together in queries in order to turn data into informa-
tion. Performance diagnostics fits well in this scenario. We per-
formed queries that brought together the network, memory, file,
and process subsystems, such as the one described in the sec-
ond row of Table 1. Security is another application area we have
touched by firing queries to identify reported system vulnerabil-
ities (see the first row of Table 1). These and other queries are
presented in detail in Ref. [5] together with performance met-
rics.
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