
Available online at www.sciencedirect.com

ScienceDirect

SoftwareX () –
www.elsevier.com/locate/softx

PySpike—A Python library for analyzing spike train synchrony

Mario Mulansky∗, Thomas Kreuz

Institute for Complex Systems, CNR, Via Madonna del Piano 10 – 50019 Sesto Fiorentino, Italy

Received 10 March 2016; received in revised form 14 July 2016; accepted 15 July 2016

Abstract

Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing
patterns (spike trains) plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train
analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to compute similarity and dissimilarity
profiles, averaged values and distance matrices. Although mainly focusing on neuroscience, PySpike can also be applied in other contexts like
climate research or social sciences. The package is available as Open Source on Github and PyPI.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Keywords: Synchrony; Spike train analysis; Spike train distance; Python

Code metadata

Current code version v0.5.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00032
Legal Code License BSD License
Code versioning system used git
Software code languages, tools, and services used Python, Cython
Compilation requirements, operating environments & dependencies numpy, cython, matplotlib, nosetests
If available Link to developer documentation/manual http://www.pyspike.de
Support email for questions mario.mulansky@gmx.net

1. Introduction

Gaining insight into the inner workings of the brain remains
a largely unsolved challenge that requires combined efforts of
biophysics, medicine, experimental as well as computational
neuroscience [1]. The basis for scientific advancement in this
field are experimental recordings of neural activity usually
represented in terms of spike trains, i.e. lists of spike times
for each recorded neuron. With sophisticated modern recording
techniques, it is now possible to perform highly parallel
measurements of neural activity, typically resulting in very
large sets of spike trains [2,3]. This generates an increased

∗ Corresponding author.
E-mail addresses: mario.mulansky@isc.cnr.it (M. Mulansky),

thomas.kreuz@cnr.it (T. Kreuz).

demand for powerful and high quality data analysis tools that
are capable of processing large datasets as produced by parallel
recordings.

There exist numerous methods to analyze spike train data,
e.g. based on spike count distributions, interspike intervals or
exact spike times. One very important approach is to quantify
the synchrony between spike trains. In the past decades several
synchrony measures have been proposed [4–6] which have al-
ready been used, among others, to quantify the reliability of
neuronal responses [7], to analyze the role of spike synchro-
nization in feature binding [8], and to distinguish different stim-
uli in the context of neuronal coding [1].

The PySpike library1 introduced here (logo shown in
Fig. 1) is a Python package that allows one to compute two

1 www.pyspike.de.

http://dx.doi.org/10.1016/j.softx.2016.07.006
2352-7110/ c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2016.07.006
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00032
http://www.pyspike.de
mailto:mario.mulansky@gmx.net
mailto:mario.mulansky@isc.cnr.it
mailto:thomas.kreuz@cnr.it
http://www.pyspike.de
http://dx.doi.org/10.1016/j.softx.2016.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 M. Mulansky, T. Kreuz / SoftwareX () –

Fig. 1. Logo of the PySpike library.

different dissimilarity measures, the ISI-distance [9], the
SPIKE-distance [10] and additionally the similarity measure
SPIKE-Synchronization [11,12]. Each of these three methods is
time-resolved, parameter-free and time-scale independent and
therefore highly versatile. Being time-resolved, for example,
means these measure can detect changes in synchrony over
time, while being parameter-free makes them readily applicable
with unambiguous results, as no parameter optimization is
required. These measures have already been applied in many
experimental studies in the past, for example [13–16].

Although developed with a neuroscientific context in mind,
the synchrony measures discussed here can be applied to any
form of discrete time series consisting of event sequences of
any kind. In fact, such measures have already been utilized in
several other research areas, such as climate research [17] or
social sciences [18,19].

PySpike is a library aimed to perform automatized data
analysis with Python scripts. It is therefore a complementary
approach to the SPIKY software package,2 a Matlab framework
for spike train analysis providing a similar functionality but
additionally offering a sophisticated GUI [11,20]. Several other
software packages for spike train analysis have been developed
in the recent past, notably SyncPy3 [21], a Python based GUI
for quantifying synchrony in time series. However, it currently
does not include the synchrony measures implemented in
PySpike. A C++ implementation of the spike train distance
measures4 was presented in [22], but it is based on sampled
data and therefore of substantially inferior performance [11].
Finally, a comprehensive collection of scientific software for
spike train analysis is also provided as part of [23], aiming
specifically at multivariate recordings.5

2. Spike train distances

Here, discrete time series are represented by spike trains,
sequences of time points denoting the occurrence of an event
(spike) at those time points: s = {t1, t2, t3, . . .}. Generally, a
time-resolved distance measure maps a pair of spike trains s1,
s2 onto a profile {s1, s2} → S(t) with 0 ≤ S(t) ≤ 1. The
overall distance value can easily be obtained by integration:
DS =

S(t) dt .

PySpike provides three such distance measures: ISI-
distance, SPIKE-distance and SPIKE-Synchronization. These
methods are sensitive to different aspects of spike train

2 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.
3 https://github.com/syncpy/SyncPy.
4 https://github.com/modulus-metric.
5 http://spiketrain-analysis.org/software.

synchrony (interspike intervals, exact spike timings, spike
matching, respectively). Hence, the choice of method should
be informed by assumptions on how information is encoded in
the spike trains. In the following, we give a brief introduction
to the measures provided in the PySpike library. For a detailed
discussion of the methods and their properties see Appendix A
and [12].

The ISI-distance profile I (t), introduced in [9], quantifies
dissimilarity in terms of the relative differences of the concur-
rent interspike intervals of the two spike trains. Essentially, it
measures the relative differences of the instantaneous rates of
the two spike trains, but it is not sensitive to exact spike tim-
ings. The ISI-distance profile is a bivariate piecewise constant
function.

The SPIKE-distance profile S(t), first introduced in [24]
and refined in [10], represents a dissimilarity profile based on
exact spike timings. Thus, the SPIKE-distance quantifies spike
train dissimilarity in terms of deviations from exact coinci-
dences of spikes in the two spike trains. This results in a bi-
variate piecewise linear profile.

While the fundamental definition of both the ISI- and the
SPIKE-distance profile is bivariate (distance profile of two
spike trains), the generalization to a multivariate context is a
straightforward average over all spike train pairs [25].

SPIKE-Synchronization [11,12] is a straight-forward, nor-
malized coincidence counter with an adaptive coincidence
window. It quantifies similarity in terms of the fraction of
coincidences between two spike trains and hence is a very in-
tuitive measure. The generalization of SPIKE-Synchronization
for many spike trains can be defined based on all spike train
pairs leading to a consistent multivariate framework with simi-
larity again quantified as the overall fraction of coincidences in
all spike trains [11,12].

3. Package structure

3.1. The spike train

The central data structure of the PySpike library is the
SpikeTrain, a Python class representing an individual spike
train. This class contains the (sorted) spike times as a
numpy.array as well as the start and end time of the
spike train. Such SpikeTrain objects can either be created
directly by providing the spike times, generated randomly
from a Poisson process using the generate poisson spikes
function, imported from text files via load spike trains
from txt or imported from time series via import spike
trains from time series. These objects then serve as input
to calculate the distance measures, cf. Fig. 2.

3.2. Computing profiles

Being time-resolved is a main advantage of the three
spike train synchrony measures discussed here. Hence,
PySpike contains functionality to compute synchrony profiles:
isi profile computes the piecewise constant ISI-profile
I (t), spike profile returns the piecewise linear SPIKE-
profile S(t) and spike sync profile yields the discrete

http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
https://github.com/syncpy/SyncPy
https://github.com/modulus-metric
http://spiketrain-analysis.org/software

Download	English	Version:

https://daneshyari.com/en/article/4978444

Download	Persian	Version:

https://daneshyari.com/article/4978444

Daneshyari.com

https://daneshyari.com/en/article/4978444
https://daneshyari.com/article/4978444
https://daneshyari.com/

