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Abstract

The parameters of a stamping process include the geometry of the tools, the shape of the initial sheet blank, the material
constitutive law and the process parameters. When designing the overall process, one has to also take into account the springback
effect that appears when the tools are removed and additional surfaces are cut-off. The goal then is to obtain a final shape as
close as possible to the desired shape, while satisfying the admissibility constraints on the variable parameters as well as the
feasibility constraints frequently expressed in the form of forming limit diagrams. In the present paper we represent the post-
springback shape by a level set function. Then, rather than rely on arbitrarily selected case-dependent measurement locations as
in the NUMISHEET benchmark problems, we build a reduced order “shape space” where this level set evolves, by extending
our recent shape manifold approach to the problem of springback assessment for 3D shapes. Next, we propose an optimization
algorithm designed to minimize the gap between the post-springback and the desired final shapes. The required level set functions
are generated from a corresponding set of springback shapes predicted by Finite Element simulations. Using our approach,
we determine the minimal number of parameters needed in order to uniquely characterize the final formed shape regardless
of complexity. Finally, we demonstrate the approach using an industrial test-case: springback assessment of the deep drawing
operation of an automotive strut tower.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

From the view of manufacturing of structural parts, high strength steels and aluminum are very attractive materials
due to their good formability, high strength characteristics, price, or quality [1]. They are commonly used for complex
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sheet metal parts. One of the most important problems however with these and similar materials (i.e. high ratio σy/E)
is that of springback, which is severe during the unloading phase of a sheet metal forming operation and greatly affects
the dimensional accuracy of the parts. High strain steels are vulnerable due to the high yield stress while aluminum
alloys due to their low Young’s modulus [2]. Springback is related to forming conditions, tool and blank geometry,
other material properties such as yield stress, work hardening, strain rate sensitivity, Young’s modulus etc. [3,4].

Corrections for springback are essential during die design in order to obtain specified final shapes. When dealing
with the springback effect in an optimization context, we face a high dimensional problem. Post-springback shapes
are typically represented by deformed FE meshes, although meshless representations with a set of nodes may be
used as well [5]. The initial shapes are defined by up to a few hundred CAD parameters (that are not necessarily
independent), but this is not the case with deformed meshes. The dimensionality in this case depends on the number
of elements and/or nodes in the mesh and may thus be prohibitively high (e.g. the parameterization in [6]) and not
directly concordant when remeshing is used. An obvious, but inefficient, way is to define a posteriori a set of geometric
parameters to describe the complex 3D post-springback shape.

For example, even in the 2D draw bending of a simple U-channel, three parameters are used to measure the amount
of springback [7] as was proposed in the benchmark of the NUMISHEET 93 conference. First of all, these are not
easy to measure (e.g. optical scanning [8]), and moreover they are essentially decided on an ad-hoc basis, and either
redundant or insufficient to fully quantify the final shapes obtained [9,10]. Furthermore, it is significantly more difficult
to apply this simplistic approach to complex 3D test cases.

Secondly, when performing a set of numerical experiments, one obtains a family of post-springback shapes cor-
responding to different values of design parameters. The inverse problem [11] then consists of finding the values of
parameters that yield a final shape as close as possible to the desired one. This requires predicting a new shape from
a set of already computed ones by defining a proper space in which we are able to measure the distances and to
interpolate between shapes.

Working directly with finite element meshes is not realistic due to potentially high numbers nodes/elements in-
volved, as has already been mentioned.

We may define a set of CAD-like parameters (NURBS, etc.) spanning the variety of deformed shapes (including
the desired shape), but this approach is tedious, arbitrary, and most importantly, difficult to automate.

Thus, since the springback shape is not easy to characterize, and given that the form obtained after springback
frequently differs from the desired final shape, it is difficult to predict a unique set of process parameters (tool/punch
geometry, blank holding force, etc.) in order to obtain a final shape as close to the manufacturer-desired shape as
possible.

In order to numerically evaluate the springback and to be able to characterize complex shapes, we need a universal
and case-independent technique to find the smallest number of parameters needed to fully describe the final shape
obtained regardless of complexity, and easily compare it with the desired geometry. The first effort was made by the
authors in [12] using their previously introduced “shape manifold” concept [13,14] for the simple NUMISHEET 93
benchmark problem of 2-D draw bending. Here, the concept of an “admissible shape” for a forming process was
introduced for the first time to distinguish between realizable/attainable post-springback shapes and idealized shapes
for a given drawing process, and the notion of interpolation between admissible shapes was introduced. The concept
of interpolating level set functions has also been studied by [15] and [16] both of whom used radial basis functions
(RBFs) and in conjunction with the level set equation.

The goal now is to parameterize a general complex 3D post-springback shape (in level set form, i.e. a signed
distance function ϕ from the shape’s surface), and interpolate between level set functions in a way that implicitly
satisfies all the admissibility constraints, i.e. by developing the “shape space” locally. Using this we determine the
intrinsic dimensionality of the drawing problem and thus the minimum number of parameters that control the final
shape obtained at the end of the drawing process, and to express the final shape as a function of the geometric
parameters G1,G2, . . . , material parameters M1,M2, . . . , and process parameters Pr1, Pr2, . . . (e.g. blank holding
force, speed, friction, etc.) i.e. ϕ = ϕ(G1,G2, . . . ,M1,M2, . . . , Pr1, Pr2, . . .). By calculating the distance between
two admissible shapes i.e. dist (ϕ1, ϕ2) or the distance of an inadmissible shape from the surface of the manifold of
admissible shapes (i.e. realistic post-springback shapes), we can characterize the amount of springback and express
it in terms of the set of design variables. A vital component here is the meta-model used to “reduce” the level set
functions representing the shapes. Meta-modeling has been widely used to approximate the physical fields associated
with the design problem using a lower order meta-model i.e. output space [17–19], using the methods of Proper
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