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A B S T R A C T

Smartphones are now equipped with sensors capable of recording vehicle performance data at a very fine
temporal resolution in a cost-effective way. In this paper, mobile sensor data from smartphones was used to
identify and quantify unsafe driving patterns and their relationship with traffic crash incidences. Statistical
models that account for measurement error associated with microscopic traffic measures computed using mobile
sensor data were developed. The models with microscopic traffic measures were shown to be statistically better
than traditional models that only control for roadway geometry and traffic exposure variables. Also, generalized
count models that account for measurement error, spatial dependency effects, and random parameter hetero-
geneity were found to perform better than standard count models.

1. Introduction

In the United States, there were 35,092 fatalities as a result of motor
vehicle crashes in 2015 and current trends show that an increase of
about 8.1 percent is expected in 2016 (Nhtsa, 2015, 2017). In the year
2015, in Virginia alone, 753 people were killed and 65,029 people were
injured in a total of 125,800 motor vehicle accidents (Dmv, 2014). This
combined with the fact that recent vehicle miles travelled (VMT) esti-
mate of a compound annual growth rate of about 1% through the year
2033 makes traffic safety a matter of great concern (Fhwa, 2015). These
crashes not only cause injury and loss of life, but they also cost a
considerable amount to the people involved. For instance, in 2010, the
economic costs of motor vehicle crashes in the nation totalled $242
billion. These costs come not only from the damage to vehicles and the
medical bills of the injured but also include items such as $28 billion
due to congestion (Blincoe et al., 2015).

Safety engineers have relied on crash frequency modelling to inform
safety policy making concerning prioritization and implementation of
countermeasures to improve safety. Crash frequency modelling is an
attempt to quantify the expected number of crashes in a certain period
(e.g., one year) at a specific location (e.g., roadway segment or inter-
section) as function of variables describing the location and the traffic
conditions at the location. These models are referred to as the Safety
Performance Functions (SPFs) in the Highway Safety Manual (HSM)
(Aashto, 2010; Farid et al., 2016). In the past, most of these SPFs for
roadways only used geometry (e.g., presence of shoulder, median width
etc.) and aggregate traffic measures (e.g., traffic volume) as explanatory

variables. However, there is limited literature on analysing the corre-
lation between microscopic traffic measures (e.g., high-resolution speed
and acceleration) and crash risk. Lack of microscopic traffic data has
been the primary impediment for limited research in this direction. In
the absence of these microscopic measures, the parameter estimates in
the SPFs can be biased and lead to wrong policy implications. For in-
stance, it is possible that in the absence of microscopic traffic measures,
the SPFs overestimate the impact of roadway improvements on safety
because they confound the effect of driving patterns and the roadway
characteristics. Also, the SPFs that lack microscopic traffic measures are
not sensitive to countermeasures that are focused on changing the
driving patterns (e.g., speed harmonization) rather than geometric
features.

The actual driving patterns along any given road are unobserved to
the analyst. However, these ‘latent’ driving patterns may be inferred
using microscopic traffic data. For instance, smartphones are now
equipped with sensors that are capable of recording highway perfor-
mance data at a fine temporal resolution in a cost-effective way (Zhen
and Qiang, 2014). In fact, several auto insurance firms (e.g., Pro-
gressive’s Snapshot) have been experimenting with monitoring driving
activity (e.g., hard-brakes per mile) through on-board diagnostic (OBD)
devices to assess and valuate the crash risk of individual drivers. Re-
cently, (Peng et al., 2017) explored the effect of reduced visibility
during foggy conditions on time to collision (TTC) using real-time data
collected using a new visibility and vehicle detection system. However,
there is no significant research on investigating the potential use of
high-resolution data from mobile sensors of smartphones in
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understanding crash risks and safety measures for highway sections.
The current study aims to make use of smartphone sensors to extract
microscopic traffic measures that can serve as indicators of latent
driving patterns and test the relationship between these microscopic
traffic measures and crash frequency along freeway segments. This
study does not aim to predict crash occurrences in real-time but rather
examines the relationship between annual crash occurrences and mi-
croscopic traffic data. Also, it is important to note that the current re-
search focusses on average driving patterns across all drivers but not
individual road users. So, the smartphone sensor data was used to
compute microscopic traffic measures that serve as surrogates of these
average driving patterns that are subsequently correlated with crash
occurrences. From a methodological standpoint, the statistical models
developed in this study account for two key aspects central to this
modeling effort. First, the microscopic traffic measures are only in-
dicators of real driving patterns. So, latent variable modeling techni-
ques were used to capture the relationship between driving patterns
and crash frequency. Second, driving patterns along a given road will
most likely depend on the driving conditions in the close vicinity
causing spatial dependency. This translates into allowing for spatial
dependency of latent variables in crash frequency models.

To start-off, mobile sensor data was collected by driving along major
roadways in the Hampton Roads region. Next, this data was overlaid on
the transportation network to map probe data and the roadway seg-
ments. Then, several speed and acceleration metrics were calculated for
each roadway using the mobile sensor data. Subsequently, these metrics
were appended to the Virginia Department of Transportation (VDOT)
crash data for the past one year. Supplementary data sources were used
to assemble information regarding roadway inventory data and traffic
exposure information. Next, statistical model estimation was under-
taken to quantify the relationship between microscopic traffic measures
and crash incidences along major interstates in Hampton Roads.

This paper is organized as follows. The next section describes the
past literature followed by a description of the methodology and models
employed in this paper. This is followed by the empirical application
and model results. Conclusions and potential future work are presented
at the end.

2. Literature review

Crashes are rare and random events. So, the number of observed
crashes at any given location can fluctuate year-to-year even if all the
observable crash causation conditions remain the same between the
two years. If the observed crash frequency is very high in one year, then
it is more likely to be followed by relatively lower crash frequency in
the next year, and vice-versa. This effect is referred to as the
‘Regression-To-Mean Bias’. This inherent variation in observed crash
frequency poses a challenge to evaluating the effectiveness of different
safety countermeasures. For instance, it is unclear if the reduction (or
increase) in crash occurrences is due to random fluctuation or the safety
countermeasure. To address this problem, safety analysts rely on esti-
mates of the long term average crash frequency, also referred to as
‘Expected Crash Frequency’, as a proxy for crash risk. The observed
crash frequency across several locations is used to statistically estimate
the expected crash frequency. Expected crash frequency modelling is a
reliable method for determining the safety of a segment of roadway.

Previous studies have looked at explanatory variables primarily in
two categories, physical characteristics of the location (e.g., roadway or
interchange) and aggregate traffic characteristics at that location (e.g.,
AADT, % of left turning traffic, % of heavy vehicle traffic etc.) (Shankar
et al., 1997; Qin et al., 2005; Lord and Mannering, 2010). A majority of
these early studies focused on physical characteristics of the roadway
due to a lack of consistent and accurate data collection means (Ogle,
2005). Unfortunately, even though such aggregate data may have some
correlation with driving patterns it is unable to capture all actual
driving patterns (i.e., flow and movement of individual vehicles and

their accelerations). It is difficult to develop an accurate representation
of expected crash frequencies when the characteristics of the actual
vehicles travelling the corridor are not considered. For instance, the
overall congested crash rate in the state of Indiana is 24.1 times greater
than the uncongested crash rate (Mekker et al., 2016). In addition to
higher traffic volumes, there are most likely unique driving patterns
that contributed to high crash rates during congested period. Simple
aggregate measures (average daily traffic and truck volumes) cannot
capture these differences between congested and uncongested condi-
tions. In order to capture these differences, safety studies that used
more disaggregate time-periods controlling for factors such as average
hourly traffic were conducted (Zhou and Sisiopiku, 1997; Chang et al.,
2000; Lord et al., 2005a). Also, real-time studies that used traffic data
from loop sensors or microwave vehicle detection systems were de-
veloped to predict the probability of crash occurrence along freeway
mainlines (Lee et al., 2002; Abdel-Aty et al., 2004; Pande et al., 2005),
ramps (Lee and Abdel-Aty, 2006; Wang et al., 2015b), and weaving
segments (Wang et al., 2015a) in real-time.

A potential source for speed data could be crash reports that were
completed at the scene of an accident by the police. This would appear
to be a simple way to obtain a piece of driving patterns. But, obtaining
speed from a police crash report is not recommended because the police
may be under a lot of stress during incident investigations and may not
be able to accurately determine the speed at which the driver was
going. Also, the driver may underreport the estimated speed which they
were travelling in an attempt to lessen the likelihood of receiving ad-
ditional infractions for an incident. Alternatively, several researchers
have used speed limit as a proxy for traffic speed. Probe vehicle data, on
the other hand, can be used to capture the speed and acceleration
profiles that serve as reliable indicators of congested traffic conditions.
Some of the previous studies have relied on simulation models to cap-
ture naturalistic driving data regarding the movements of the actual
vehicle itself through space and time (Gettman and Head, 2003). This
method of data collection allows the researcher to control for every
aspect of the simulation while being able to alter the simulation to fit
different scenarios. Multiple simulation inputs may be evaluated in a
short period of time to get the most accurate results. A limitation of
these methods, however, is that it is based on simulation and not
driving behaviour in reality.

Recent studies have focused on obtaining and using data collected
directly in the field to develop more accurate crash frequency models.
GPS sensors and OBD devices are now regularly used in transportation
research to obtain the aforementioned naturalistic driving behaviour
data (Ogle, 2005; Jun, 2006). Another option when considering probe
vehicle data is using data that is crowd-sourced, collected, and com-
bined into a dataset by a third party source (Mekker et al., 2016). This
data source has the benefit of allowing the researchers to have a more
robust dataset that encompasses a greater length of time. The data can
be collected and stored for multiple years rather than only being
available for the duration of research period. This allows the researcher
to have access to probe vehicle data that was collected around the time
that actual accidents occurred. (Wåhlberg, 2004) looked at the accel-
eration profiles of busses as a potential indicator of crash frequency and
study concluded that driver acceleration behaviour could be used as a
predictor of accidents. But, due to some discrepancies between samples
it was difficult to determine the validity of this finding. Also, in this
study, the acceleration data was recorded on-board using a g-analyst
which measured the acceleration at 10 Hz to 100th of 1 g (9.81 m/s2)
accuracy. This tool did not measure the acceleration from the vehicle
directly but, simply measured the g-force felt by the bus’s start and stop
motions. This may have resulted in errors due to the vehicle not pro-
ducing the data itself. In the literature, there are studies that focus on
registering driving patterns with a data logging equipment to study
environmental effects of traffic such as emissions estimation (Höglund
and Niittymäki, 1999; Rodríguez et al., 2016).

To summarize, past literature highlighted the importance of
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