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Highlights

• We discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis.
• We give an estimate of the quadrature computational cost and compare with the standard approach.
• We perform numerical tests.
• Sum-factorization significantly reduces the quadrature computational cost.

Abstract

In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric
analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the
sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly
reduces the quadrature computational cost.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) is a computational technique for the solution of boundary value problems. It is re-
cent and at the same time well known in the computational engineering academic community, as an extension of the
classical Finite Element Method (FEM). IGA was proposed in the seminal paper [1], based on the idea of using the
functions adopted in Computer Aided Design (CAD), that is, splines and Non-Uniform Rational B-Splines (NURBS),
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not only to describe the domain geometry, but also to represent the numerical solution of the problem, in the isopara-
metric framework. For the interested reader, we refer to the book on IGA [2]. A recent overview on the mathematical
aspects of IGA is [3], that covers the known mathematical theory of IGA but also contains an updated bibliography
with references to the major contributions and applications of IGA in various engineering fields.

One of the interesting features of IGA, compared to high order FEM, is that it allows for higher global regularity
of the shape functions, up to C p−1 inter-element continuity for p-degree splines and NURBS. This leads to a higher
accuracy per degree-of-freedom (see [4,5]), improved spectrum properties of the discrete operators (see [6]), and the
possibility of constructing smooth discretizations of the fundamental structures of the differential operators (such as
De Rham diagrams, see e.g. [7,8]).

IGA can be implemented re-using the existing finite element technology. This may be not the most efficient way
to use IGA but surely is one key reason of its fast diffusion and the easiest way to apply IGA on complex problems.
In particular, the construction of the matrix of the linear system arising in a Galerkin isogeometric method is typically
made by the element-by-element quadrature and assembling as in FEMs. However for high regular and high degree
(p ≥ 3) splines and NURBS, it is experienced that most of the CPU time goes in the quadrature and assembling itself.
This may be understood comparing IGA with C0 to C p−1 p-degree splines (or, equivalently, FEM and typical IGA)
on the same mesh: element-wise quadrature has the same computational cost in the two cases, even though the C p−1

case results in a much smaller linear system. The high cost of quadrature has motivated the research on quadrature
rules that keep into account the interelement regularity of IGA functions, see [9–11], improving efficiency w.r.t. Gauss
quadrature. In this paper we consider another significant improvement: one can exploit the tensor-product structure
of multivariate splines by adopting the so called sum-factorization, a well-known technique for spectral elements or
some high-degree finite elements (see e.g. [12–14]), but never used with IGA, at our knowledge.

The aim of this paper is to discuss and benchmark the use of sum-factorization in IGA. We show that there is a
clear advantage versus the standard quadrature approach, and show that the cost of quadrature (by sum-factorization)
is balanced with the cost of the linear solver for high degree IGA. We also discuss the implementation of the proposed
sum-factorization within our isogeometric library i g a t o o l s [15]. We do not consider parallel implementation
though this is clearly a key ingredient for a modern and efficient isogeometric code (see for example [16]).

There are other possibilities to circumvent the element-by-element quadrature issue that however require a change
of paradigm. For example, if the mesh is uniform, one can efficiently and directly compute the entries of the linear
system matrix (see [17–20]) or switch from Galerkin to a collocation formulation [21,22].

The outline of the paper is as follows. In Section 2 we set up the notation and briefly describe the setting of an
academic problem. Section 3 introduces the sum-factorization algorithm and discuss its computational cost in terms
of the degree p. Section 4 is devoted to the numerical testing and comparison with other strategies. Finally, we draw
conclusions in Section 5. An Appendix is included in order to describe the treatment of the linear elasticity stiffness
matrix.

2. Preliminaries

We consider the elliptic problem
−µ∇

2u + σu = f in Ω
u = 0 on ∂Ω

(2.1)

as a model problem. Its Galerkin approximation on a discrete space V requires the computation of the following
matrix entries:

• the mass matrix (or mass integrals)

Mi, j =


Ω

σ(x)Ri(x)Rj(x) dx; (2.2)

• the stiffness matrix (or stiffness integrals)

Si, j =


Ω

µ(x)∇ Ri(x) · ∇ Rj(x) dx; (2.3)

where Ri and Rj denote two basis function in V, µ : Ω → R and σ : Ω → R.
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