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Abstract

In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-
experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest
in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding
dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend
that method to the general case where the model parameters cannot be determined completely by the data from the proposed
experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of
the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal
density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can
be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected
over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte
Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity
of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear
under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with
two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square
domain, where the unknown parameter is the conductivity, which is represented as a random field.
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Nomenclature

1ΩM an indicator function that takes the value of 1 when θ ∈ ΩM , 0 otherwise
∆k the length of the kth segment
Uh the nodal voltage vector
h p(s, t) the logarithm of the prior weight function p(s, t) i.e., log[p(s, t)]
h(s, t) the logarithm of posterior weight function, p(s, t|ȳ) i.e., log[p(s, t|ȳ)]
ȳ = {y}M

i=1 a set of observed data points
ϵQ the prediction error
tr the trace of a matrix
∇s the gradient in s
Σ̃ s|t the approximate conditional covariance matrix Σ̃ s|t =

1
M {UT

[Jg(f (ŝ, t))T Σ−1
ϵ Jg(f (ŝ, t))]U}

−1

1s=ŝ an indicator function, which takes the value of 1 when s = ŝ, and takes the value 0 otherwise
Es the sum of the data residuals, i.e., Es =

M
i=1 ri

Fh the force vector
Hg the Hessian of model g w.r.t. the parameter θ

Hs the Hessian of model g w.r.t. the parameter s
Jg the Jacobian of model g w.r.t. the parameter θ

Js the Jacobian of g w.r.t. the parameter s
K(θ) the stiffness matrix
n the normal vector to the boundary
ri the i th residual vector, i.e., ri = g(θ0) + ϵi − g(θ)

U the matrix whose columns are the basis corresponding to the positive eigenvalues of H(f (0, t))
V the matrix whose columns are the basis corresponding to the zero eigenvalues of H(f (0, t))
yi the i th s × 1 observable response vector
Λ a diagonal matrix containing the eigenvalues of H(f (0, t))
ξ the r × 1 vector of design parameters, also known as the experimental setup
ϵ1, . . . , ϵM i.i.d. s × 1 error vectors, with ϵ1 ∼ N (0,Σ ϵ)

θ0 the d × 1 true parameter vector used to generate the synthetic data
a j the subset of the boundary corresponding to the j th electrode
d the dimension of parameter vector θ0
dg the dimension of measurement vector g
H1(Ω) the Sobolev space with a square integrable gradient
Hp(ŝ, t) the Hessian of h p(ŝ, t)
l the total number of electrodes
M the total number of observations
N Q the number of quadrature points
N S1 the number of points in a one-dimensional mesh partitioning the domain of scalar Q
O(·) the big O notation
OP (·) the big O in probability
P(·) the probability measure
pΘ (θ) the prior of the unknown random parameter θ

pΘ (θ |ȳ) the posterior pdf of the unknown random parameter θ

pY (ȳ|ξ) the Bayesian evidence, defined as the marginalization of likelihood over all admissible parameters
ps(0) =


Tt

p(0, t)dt the marginal of prior pdf of parameter s
Q the quantity of interest
U j the measured voltage on the j th electrode and part of the solution of the weak form of the Poisson

equation
Vh the finite element subspace of V , i.e., Vh := {v ∈ V : v is piecewise linear continuous over Ωh}

wi the weights for the i th quadrature points
g : Rd

× Rk
→ Rs a deterministic nonlinear mapping
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