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A B S T R A C T

As connected autonomous vehicles (CAVs) enter the fleet, there will be a long period when these vehicles will
have to interact with human drivers. One of the challenges for CAVs is that human drivers do not communicate
their decisions well. Fortunately, the kinematic behavior of a human-driven vehicle may be a good predictor of
driver intent within a short time frame. We analyzed the kinematic time series data (e.g., speed) for a set of
drivers making left turns at intersections to predict whether the driver would stop before executing the turn. We
used principal components analysis (PCA) to generate independent dimensions that explain the variation in
vehicle speed before a turn. These dimensions remained relatively consistent throughout the maneuver, allowing
us to compute independent scores on these dimensions for different time windows throughout the approach to
the intersection. We then linked these PCA scores to whether a driver would stop before executing a left turn
using the random intercept Bayesian additive regression trees. Five more road and observable vehicle char-
acteristics were included to enhance prediction. Our model achieved an area under the receiver operating
characteristic curve (AUC) of 0.84 at 94 m away from the center of an intersection and steadily increased to 0.90
by 46 m away from the center of an intersection.

1. Introduction

An autonomous vehicle can be loosely defined as a vehicle where no
human supervision or human controlled driving is needed. The
National Highway Traffic Safety Administration (NHTSA) provides a
more detailed definition with five levels of classification (National
Highway and Traffic Safety Administration, 2013), ranging from Level
0 – the driver completely controls the vehicle at all times (typical of a
20th century vehicle before the introduction of electronic stability
control or antilock braking) – to Level 4, where vehicle performs all
functions for the entire trip, with the driver not expected to control the
vehicle at any time. An example of a Level 4 autonomous vehicle is a
vehicle from the Google Self-Driving Car Project.

In 2009, Google started testing these self-driven vehicles on the
streets of Mountain View, California and Austin, Texas. As of August
2015, Google reported that they had self-driven these vehicles for more
than 1 million miles (Google, 2015), and they had been involved in a
total of 14 accidents since 2009 (CNNMoney, 2015). In all these acci-
dents, Google asserted that human error and inattention was the main
cause. Google's claim is not surprising since these vehicle will have to
interact with human drivers. Unfortunately, human drivers do not

always communicate their decisions clearly, leading to near crashes and
crashes. As such, autonomous vehicles can benefit from predicting
human driver decisions using information conveyed by the human
driver's vehicle.

In this paper, we hypothesized that the kinematic behavior of a
human driven vehicle provides enough information to make a good
prediction of driver intent within a short time frame. We envision a
system whereby a driver-intent model is evaluated on the human dri-
ver's vehicle and transmitted via vehicle-to-vehicle (V2V) communica-
tion. Although current autonomous vehicles under development gen-
erally use onboard sensors to gather information, V2V communication
will increasingly be available as an additional source of information,
resulting in connected and automated vehicles (CAVs). Hence, using the
kinematic behavior of a human driven vehicle to predict driver intent
makes sense if a driver's unique tendencies are an important predictor.
Thus, a human-driven vehicle can learn its driver's intent patterns and
communicate these to CAVs nearby.

In particular, we studied the speed of a human driven vehicle. We
focused on predicting whether a driver will stop at an intersection be-
fore executing a left turn. This is important for two reasons. First, left
turns at intersections can result in injury-causing side impacts.
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According to the National Motor Vehicle Crash Causation Survey
(NMVCCS), 22% of the tow-away crashes in the US in 2008 were due to
left turn maneuvers at intersections (Choi, 2010). Second, knowing if a
human driven vehicle would stop before executing the left turn man-
euver would allow the driverless vehicle to make a critical decision of
whether to execute its own planned maneuver or wait.

To build the prediction model, we used naturalistic driving data
from about 100 licensed drivers in Michigan. We converted the time
series data to a distance series and defined a new distance-varying
outcome. Because we believed that recent speeds contain more in-
formation about the human driver's intention to stop compared to past
speeds, we employed a moving window on the distance-varying speeds.
Next, we used principal components analysis (PCA) to reduce the
number of variables employed in our prediction algorithm. To link our
distance-varying outcomes to our principal component (PC) variables
and five other road and observable vehicle characteristics predictors,
we used a model we recently developed, the random intercept Bayesian
additive regression trees (riBART). riBART (Tan et al., 2016) is an ex-
tension of Bayesian additive regression trees (BART; Chipman et al.,
2010) which is able to account for the repeated left turns made by the
same driver. We evaluated riBART's prediction performance at every
meter away from the center of an intersection by using the area under
the receiver operating characteristic curve (AUC) and compared these
results with standard BART and linear logistic regression. Finally, we
plotted the sensitivity and false positive rate (FPR; Davis and Goadrich,
2006) profiles of riBART where =sensitivity True positives

All left turn stops and

= −FPR non
False positives

All left turn stops to investigate how the predicted probability
cut-off level affects unnecessary stops by the CAVs and crashes.

2. Data and methods

2.1. Naturalistic driving data

We obtained our dataset from a previous study by Sayer et al.
(2011). In brief, our naturalistic driving data was collected from 108
licensed drivers in Michigan between April 2009 and April 2010. Six-
teen late-model Honda Accords were fitted with cameras, recording
devices, and a collision warning system – the Integrated Vehicle Based
Safety System (IVBSS) – to collect visual and kinematic data from the
drivers for a total of 40 days – 12 days baseline period with IVBSS
switched off followed by 28 days with IVBSS activated. To avoid

confounding due to the IVBSS system, we used the 12 days baseline
unsupervised driving data to develop our prediction model. Because
information about road types and intersections outside Michigan was
not available, we restricted our analysis to driving within Michigan in
order to facilitate the accurate identification of an intersection and its
associated road type. Accurate identification of an intersection allows
us to determine a reference time to start extracting the information
necessary for our prediction model.

In this study, we had data from 108 drivers who made 3795 turns.
Of these 3795 turns, 1823 were left turns. We took the time at 100 m
away from the center of an intersection (−100 m) as the reference
point for the start of data extraction and stopped extraction at the time
the vehicle was beyond the center of an intersection i.e. 0 m. We ex-
tracted both the speed of the vehicle (in m/s) and the amount of dis-
tance traveled (in m) at 10 ms intervals starting from our reference
point. We also defined a vehicle as stopped when its speed was≤1 m/s.

Because our goal is prediction of stopping before turning for future
turns, we rescale the original time series predictors to measure distance
from the intersection. We do this because, in a turn that is not complete,
only the distance from the intersection will be known in advance; we
will know the duration that the vehicle takes to reach the center of an
intersection only after the vehicle has reached the center of an inter-
section. Fig. 1 illustrates this conversion using an example with Driver
40 Trip 34 Turn 1. Fig. 1(a) shows the speed profile of this particular
turn. In this example, our target is the vehicle speed at 70 m away from
the center of an intersection (−70 m). To obtain this speed, we first
“draw” a line at −70 m and focus on the speed sample points closest to
this −70 m line. Fig. 1(b) shows the blow up of this focal point. To set
the speed at −70 m, we then compared which of the two speed sample
points was closest to −70 m. In our example, because the point on the
left was closest, it was set as the speed at −70 m for this turn. For the
speeds of this turn from −100 m to −1 m at every 1 m interval, we
employed a similar approach. In the situation where more than one
speed sample point was closest to the line, we took their average as the
speed at that distance.

Because vehicles can stop and restart before reaching the center of
the intersection, we define “stopping” as a distance-varying outcome.
Let i be the ith turn and j be the jth meter away from the center of
intersection, j =−100,…,−1. Let sij be the distance series of vehicle
speed and yij be the distance-varying outcome (1 = stopped in future,
0 = will not stop in future). We defined yij as follows:

Fig. 1. Original speed profile of Driver 40 Trip 34 Turn 1.
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