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Abstract

A continuation problem for finding successive solutions of discretised abstract first-order evolution problems is proposed and a
general piecewise C1 continuation problem is studied. A condition ensuring local existence and uniqueness of its solution curves is
given. An analogy of the first-order system of smooth problems is derived and results of existence and uniqueness of its solutions
are stated. Possibility of continuation of a solution curve along directions solving the first-order system is discussed. A technique
for numerical continuation of the solution curves is developed. Furthermore, an application of the abstract continuation problem is
presented for plane quasi-static contact problems with friction. Various formulations of the first-order system are derived for this
case so that the analysis from the abstract frame can be developed and supplemented. Finally, the proposed numerical continuation
is tested on model examples.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

When time-stepping schemes are used to solve quasi-static problems in solid mechanics numerically, one can en-
counter situations where usual solvers (for instance, the Newton method with the initial approximation chosen to be
a solution from the previous time step) fail to compute any solution. Typically, this can happen when a snap-through
instability is present and even a small change in loading leads to a dramatic change of the solution. This has lead
us to construct a suitable continuation problem for dealing with such situations. Although our motivation originated
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from solving quasi-static problems with the particularity that the time derivative appears only in a nonlinear term, our
approach can be applied to first-order evolution problems generally. The idea how to do it is explained in an abstract
frame in the beginning of Section 2.

Whereas continuation is well-established for problems involving a continuously differentiable map (see [1], for
example), a little work has been done for problems with general non-smooth functions and it is oriented mainly to
homotopy methods [2,3]. That is why the next ambition of this paper is to give a rigorous analysis of a general
continuation problem. In particular, a problem involving an arbitrary piecewise C1 (PC1) function is considered in
Section 2.1, and a result guaranteeing local existence and uniqueness of its solution curves is stated. Furthermore,
an analogy of the first-order system for smooth problems is introduced, which gives a possibility of studying tangent
behaviour of solution curves near a given solution point.

The reason why we confine ourselves to the framework of PC1-functions is that it seems to be well-suited for plane
contact problems, for which a particular continuation problem is proposed in Section 3. Contact problems lead to func-
tions that are not Gâteaux-differentiable in general. Nevertheless, let us note that other problems from engineering or
economics are covered by the framework, as well [4].

After laying theoretical foundation, we describe a method of numerical continuation for tracing PC1 solution
curves in Section 2.2. Our approach is close to the continuation from [3] for normal maps with polyhedral convex
sets, to the ones from [5,6] for frictionless contact problems or to the ones from [7–9] for plane contact problems with
Coulomb friction. The main contrast to all those papers is that the present algorithm does not obey precise expressions
of sub-domains of smooth behaviour of the PC1-function involved, which require quite detailed specification of the
function during implementation.

The strategy proposed here is based on the predictor–corrector method for smooth functions sketched in [10], which
resembles an arc-length continuation and is capable of traversing smooth folds on its own, without adding any special
routines. Having inherited this property, our continuation includes also a special technique for treating non-smooth
points on solution curves, which may be even fold points at the same time. Let us point out that we use no smoothing
unlike [11,12] to avoid the danger of modification of the solution structure of the original non-smooth problem.

As indicated, Section 3 deals with a particular continuation problem for discretised quasi-static plane contact prob-
lems with Coulomb friction in large deformations. Firstly, we formulate the corresponding continuous problem and
discretise it. The spatial discretisation is done by a mixed finite-element method while time derivatives are approx-
imated by backward differences. Then we propose a continuation problem for this case and making use of ideas
from [13], we reformulate it so that it fits our general framework.

Section 3.1 employs the specific structure of the problem and establishes more precise analysis of its first-order
system, extending the studies [5,6,14] for frictionless problems. In particular, we formulate the first-order system in
such a way that it is close to a rate problem of a quasi-static contact problem from the mathematical point of view.
Making use of this similarity, we adapt the analysis of the rate problem from [15] to our first-order system. Moreover,
we investigate the abstract result of continuation of solution curves in directions solving the first-order system.

Finally, numerical experiments with the continuation method from Section 2.2 are presented in Section 3.2. A
similar algorithm has already been tested on static contact problems in [7,8], but only on finite-element models with
very small number of degrees of freedom. Here we show results for more realistic models.

1.1. Notation and preliminaries

The following notation is employed throughout the paper: For a vector x ∈ RN , a matrix A ∈ RM×N and index sets
I ⊂ {1, . . . , M} and J ⊂ {1, . . . , N }, xi stands for the i th component of x, xJ is the sub-vector of x composed from
the components xi , i ∈ J , and AI,J is the sub-matrix of A with rows and columns specified by I and J , respectively.
Furthermore, x · y = x⊤y is a scalar product of vectors x and y, ∥x∥ denotes the Euclidean norm of x and B(x, r)

stands for a closed ball centred at x with radius r .
The gradients of a real-valued function f and a vector-valued function f at a point x̄ are denoted by ∇ f (x̄) and

∇f (x̄), respectively, the partial gradients with respect to y of f and f at (x̄, ȳ) are denoted by ∇y f (x̄, ȳ) and ∇y f (x̄, ȳ),
respectively, and ∇

2 f (x̄) is the Hessian of f at x̄. If f is a function of a real variable, f ′ denotes its right-hand derivative
for brevity of notation. In the same way as for vectors, the j th component function of a vector-valued function f is
systematically denoted by f j .

For reader’s convenience, we recall essentials from theory of PC1-functions [4,16]:
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