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Abstract

A continuation problem for finding successive solutions of discretised abstract first-order evolution problems is proposed and a
general piecewise ¢! continuation problem is studied. A condition ensuring local existence and uniqueness of its solution curves is
given. An analogy of the first-order system of smooth problems is derived and results of existence and uniqueness of its solutions
are stated. Possibility of continuation of a solution curve along directions solving the first-order system is discussed. A technique
for numerical continuation of the solution curves is developed. Furthermore, an application of the abstract continuation problem is
presented for plane quasi-static contact problems with friction. Various formulations of the first-order system are derived for this
case so that the analysis from the abstract frame can be developed and supplemented. Finally, the proposed numerical continuation
is tested on model examples.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Continuation; Piecewise-smooth system; First-order system; Predictor—corrector; Contact problem; Coulomb friction

1. Introduction

When time-stepping schemes are used to solve quasi-static problems in solid mechanics numerically, one can en-
counter situations where usual solvers (for instance, the Newton method with the initial approximation chosen to be
a solution from the previous time step) fail to compute any solution. Typically, this can happen when a snap-through
instability is present and even a small change in loading leads to a dramatic change of the solution. This has lead
us to construct a suitable continuation problem for dealing with such situations. Although our motivation originated
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from solving quasi-static problems with the particularity that the time derivative appears only in a nonlinear term, our
approach can be applied to first-order evolution problems generally. The idea how to do it is explained in an abstract
frame in the beginning of Section 2.

Whereas continuation is well-established for problems involving a continuously differentiable map (see [1], for
example), a little work has been done for problems with general non-smooth functions and it is oriented mainly to
homotopy methods [2,3]. That is why the next ambition of this paper is to give a rigorous analysis of a general
continuation problem. In particular, a problem involving an arbitrary piecewise C' (PC") function is considered in
Section 2.1, and a result guaranteeing local existence and uniqueness of its solution curves is stated. Furthermore,
an analogy of the first-order system for smooth problems is introduced, which gives a possibility of studying tangent
behaviour of solution curves near a given solution point.

The reason why we confine ourselves to the framework of PC!-functions is that it seems to be well-suited for plane
contact problems, for which a particular continuation problem is proposed in Section 3. Contact problems lead to func-
tions that are not Gateaux-differentiable in general. Nevertheless, let us note that other problems from engineering or
economics are covered by the framework, as well [4].

After laying theoretical foundation, we describe a method of numerical continuation for tracing PC! solution
curves in Section 2.2. Our approach is close to the continuation from [3] for normal maps with polyhedral convex
sets, to the ones from [5,6] for frictionless contact problems or to the ones from [7-9] for plane contact problems with
Coulomb friction. The main contrast to all those papers is that the present algorithm does not obey precise expressions
of sub-domains of smooth behaviour of the PC!-function involved, which require quite detailed specification of the
function during implementation.

The strategy proposed here is based on the predictor—corrector method for smooth functions sketched in [10], which
resembles an arc-length continuation and is capable of traversing smooth folds on its own, without adding any special
routines. Having inherited this property, our continuation includes also a special technique for treating non-smooth
points on solution curves, which may be even fold points at the same time. Let us point out that we use no smoothing
unlike [11,12] to avoid the danger of modification of the solution structure of the original non-smooth problem.

As indicated, Section 3 deals with a particular continuation problem for discretised quasi-static plane contact prob-
lems with Coulomb friction in large deformations. Firstly, we formulate the corresponding continuous problem and
discretise it. The spatial discretisation is done by a mixed finite-element method while time derivatives are approx-
imated by backward differences. Then we propose a continuation problem for this case and making use of ideas
from [13], we reformulate it so that it fits our general framework.

Section 3.1 employs the specific structure of the problem and establishes more precise analysis of its first-order
system, extending the studies [5,6,14] for frictionless problems. In particular, we formulate the first-order system in
such a way that it is close to a rate problem of a quasi-static contact problem from the mathematical point of view.
Making use of this similarity, we adapt the analysis of the rate problem from [15] to our first-order system. Moreover,
we investigate the abstract result of continuation of solution curves in directions solving the first-order system.

Finally, numerical experiments with the continuation method from Section 2.2 are presented in Section 3.2. A
similar algorithm has already been tested on static contact problems in [7,8], but only on finite-element models with
very small number of degrees of freedom. Here we show results for more realistic models.

1.1. Notation and preliminaries

The following notation is employed throughout the paper: For a vector x € R", a matrix A € R™*¥ and index sets
I C{l,...,M}and J C {1, ..., N}, x; stands for the ith component of x, x is the sub-vector of x composed from
the components x;, i € J, and A; ; is the sub-matrix of A with rows and columns specified by / and J, respectively.
Furthermore, x - y = x 'y is a scalar product of vectors x and y, ||x|| denotes the Euclidean norm of x and B(x, r)
stands for a closed ball centred at x with radius r.

The gradients of a real-valued function f and a vector-valued function f at a point X are denoted by V f(x) and
Vf(x), respectively, the partial gradients with respect toy of f and f at (x, y) are denoted by V), f(x,y) and V,, f(x, y),
respectively, and V? f (%) is the Hessian of f at¥. If f is a function of a real variable, f’ denotes its right-hand derivative
for brevity of notation. In the same way as for vectors, the jth component function of a vector-valued function f is
systematically denoted by f;.

For reader’s convenience, we recall essentials from theory of PC !_functions [4,16]:
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