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a  b  s  t  r  a  c  t

This study  was  performed  to investigate  the  spatially  varying  relationships  between  crash  frequency
and  related  risk  factors.  A  Bayesian  spatially  varying  coefficients  model  was  elaborately  introduced  as
a methodological  alternative  to  simultaneously  account  for  the  unstructured  and  spatially  structured
heterogeneity  of  the regression  coefficients  in  predicting  crash  frequencies.  The  proposed  method  was
appealing  in that  the  parameters  were  modeled  via  a conditional  autoregressive  prior  distribution,  which
involved  a single  set  of random  effects  and  a spatial  correlation  parameter  with  extreme  values  corre-
sponding  to  pure unstructured  or pure  spatially  correlated  random  effects.

A  case  study  using  a three-year  crash  dataset  from  the  Hillsborough  County,  Florida,  was  conducted
to  illustrate  the  proposed  model.  Empirical  analysis  confirmed  the  presence  of  both  unstructured  and
spatially  correlated  variations  in  the  effects  of  contributory  factors  on  severe  crash  occurrences.  The
findings  also  suggested  that  ignoring  spatially  structured  heterogeneity  may  result  in  biased  parameter
estimates  and  incorrect  inferences,  while  assuming  the  regression  coefficients  to  be spatially  clustered
only  is probably  subject  to  the issue  of  over-smoothness.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Modeling crash data involving contiguous spatial units, such as
road networks and traffic analysis zones (TAZs), has gained grow-
ing research interests in the road traffic safety domain. This allows
safety analysts to identify the clustering pattern of crashes, to bet-
ter understand the factors that contribute to crash occurrences, and
to recommend targeted countermeasures. Conventional crash pre-
diction models, including the commonly used negative binomial
and Poisson lognormal models, have an underlying assumption that
their observations should be mutually independent. This funda-
mental requirement is almost always violated, because crash data
collected in close proximity usually display spatial dependence
(Quddus, 2008). The inclusion of spatially correlated effects typi-
cally has two main benefits. First, considering spatial correlation
helps site estimates to pool strength from their neighbors, thereby
improving model estimations (Aguero-Valverde and Jovanis, 2008).
Second, spatial dependence can serve as a surrogate for unobserved
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covariates that vary smoothly over the region of interest (Cressie,
1993).

A range of spatial statistical techniques have been used to incor-
porate this spatial dependence into crash frequency modeling. The
Bayesian hierarchical models are primarily used in these analyses,
in which the spatial correlation is modeled via a set of random
effects at the second level of hierarchy (Miaou et al., 2003; MacNab,
2004; Aguero-Valverde and Jovanis, 2006, 2008, 2010; Aguero-
Valverde, 2014; Quddus, 2008; El-Basyouny and Sayed, 2009a;
Mitra, 2009; Guo et al., 2010; Huang and Abdel-Aty, 2010; Siddiqui
and Abdel-Aty, 2012; Flask and Schneider, 2013; Wang et al., 2013a,
2016; Xie et al., 2013; Dong et al., 2014, 2016; Xu et al., 2014; Zeng
and Huang, 2014; Lee et al., 2015; Huang et al., 2016; Wang and
Huang, 2016). This effect is mostly derived from the intrinsic con-
ditional autoregressive (CAR) prior distribution proposed by Besag
et al. (1991), which is a special case of Gaussian Markov random
fields (Rue and Held, 2005). Alternative CAR specifications were
also introduced by Richardson et al. (1992), Cressie (1993), and
Leroux et al. (1999). Lee (2011) made a comprehensive compar-
ison and concluded that the model of Leroux et al. (1999) was
most appealing, as it performed consistently well in the presence
of independence and strong spatial correlation.
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Although most safety analysts have made an effort to handle
the spatially correlated effects in model residuals, a limited num-
ber of studies have specifically focused on another issue related
to the location dimension of crash data, i.e., spatial heterogeneity
or spatial non-stationarity (Xu and Huang, 2015). Variables do not
usually vary identically across space, and the relationship between
crashes and related risk factors may  not necessarily be constant or
fixed across the study area. The possibility of accounting for this
spatial heterogeneity by allowing some or all parameters to vary
spatially holds considerable promise.

One possible method is the random parameters count-data
models. Some of the many factors that influence crash occur-
rences are not observed or are nearly impossible to collect. If these
unobserved factors were correlated with observed ones, biased
parameters would be estimated and incorrect inference could
be drawn (Mannering and Bhat, 2014). The random parameters
approach has therefore been used to account for the unob-
served heterogeneity in crash frequency (Anastasopoulos and
Mannering, 2009; El-Basyouny and Sayed, 2009b, 2011; Dinu and
Veeraragavan, 2011; Ukkusuri et al., 2011; Venkataraman et al.,
2013; Barua et al., 2015, 2016). The regression coefficients in
these random parameters models typically arise independently
from some univariate distributions, and no attention is paid to the
locations to which the parameters refer. This hypothesis may  be
inappropriate, particularly in cases where the unobserved factors
are correlated over space (Xu and Huang, 2015). To capture this spa-
tially structured variability in the effects of contributory factors, Xu
and Huang (2015) advocated the development of a model based on
the principle that the estimated parameters on a geographical sur-
face are related to each other with closer values more similar than
distant ones.

To address this potential spatial correlation in varying coef-
ficients, two competing approaches are promising, i.e., the
geographically weighted Poisson regression (GWPR; Fotheringham
et al., 2002; Nakaya et al., 2005) and the Bayesian spatially vary-
ing coefficients (BSVC) models (Congdon, 1997, 2003; Assuncao
et al., 2002; Gelfand et al., 2003). The geographically weighted
approach is one of the most innovative techniques in geography
and has become increasingly prevalent in spatial econometrics,
ecology analysis and disease mapping (Yao et al., 2015a). The
method is similar in spirit to local linear models, relying on the
calibration of multiple regression models for different geographical
entities. Recently published studies have empirically demonstrated
the superiority of the GWPR model with a substantial improvement
in model goodness-of-fit and the ability to explore the spatially
varying relationships between crash counts and predicting factors
(Hadayeghi et al., 2010; Li et al., 2013; Pirdavani et al., 2014a, 2014b;
Shariat-Mohaymany et al., 2015; Xu and Huang, 2015; Yao et al.,
2015b).

Another potential method is the BSVC. The BSVC model has
long been emerging in statistics as a methodological alternative to
examine the non-constant linear relationships between variables
(Congdon, 1997). The varying coefficients in the BSVC model can
be selectively modeled as the geostatistical (Gelfand et al., 2003),
intrinsic CAR (Congdon, 1997; Assuncao et al., 2002), or multiple
membership processes (Congdon, 2003). Such an approach fits nat-
urally into the Bayesian paradigm, where all parameters are treated
as unknown random quantities. Obviously, the BSVC model differs
from the GWPR in that the former is a single statistical model spec-
ified in a hierarchical manner, whereas the latter is an assembly of
local spatial regression models, each fits separately. Wheeler and
Calder (2007) conducted a series of simulation studies to evaluate
the accuracy of regression coefficients in these two  types of models
under the presence of collinearity. Their evidence suggested that
the BSVC model produced more accurate and more easily inter-
preted inferences, thus providing more flexibility (Wheeler and

Calder, 2007). However, to assume the regression coefficients to
be spatially clustered only is a strong prior belief. In reality, spatial
pooling with smoothly varying coefficients over contiguous areas
may  be implausible, especially when clear discontinuities exist
(Congdon, 2014; p. 340). In this vein, a robust model with a mech-
anism to accommodate the global and local smoothing collectively
would be preferable.

This study intends to investigate the spatially varying relation-
ships between crash frequency and relevant risk factors using a
fully Bayesian approach. To simultaneously determine the strength
of the unstructured and spatially structured variations in model
regression coefficients, the CAR prior distribution derived from
Leroux et al. (1999) is elaborately extended to the spatially varying
coefficients framework. The proposed method is illustrated based
on a case study with a comprehensive dataset from Hillsborough
County, Florida.

2. Methodology

We begin this section with a quick review of the fixed coef-
ficients model commonly used for modeling spatially correlated
errors in crash prediction. We then move on to detail how this basic
model can be readily generalized to estimate the varying regression
coefficients within a fully Bayesian context.

Let Yi denote the observed number of crashes in location
i(i = 1, 2, ..., n), EVi the exposure, and Xik the kth(k = 1, 2, ..., p)
explanatory variable. On the basis of Huang and Abdel-Aty (2010),
we have:

Yi∼Poisson(�i)

ln(�i) = ˇ1 + ˇ2 ln(EVi) +
p∑
k=3

ˇkXik + ui + si
(1)

where �i is the parameter of the Poisson model (i.e., the expected
number of crashes in site i); ˇ1 is the intercept; ˇk(k = 2, ..., p)
refers to the kth regression coefficient to be estimated; ui denotes
the pure unstructured effect, which could be specified via an
exchangeable normal prior, i.e., ui∼N(0,  �2

u ); and si is the spatially
structured or spatially correlated error.

One widely used joint density for the spatial effects s =
(s1, s2, ..., sn) is in terms of pairwise differences in errors and a
variance term �2

s (Besag et al., 1991):

P(s1, s2, ..., sn) ∝ exp[−0.5(�2
s )

−1∑
i∼j
cij(si − sj)

2
] (2)

This joint density implies a normal conditional prior for si con-
ditioning on the effect of sj in the remaining observations:

si|sj /=  i∼N(

∑
jcijsj∑
jcij

,
�2
s∑
jcij

) (3)

where cij represents the non-normalized weight, e.g., cij = 1 if i
directly connects with j, otherwise cij = 0 (with cii = 0); and �2

s
is the variance parameter, which controls the amount of extra
variations due to spatial correlation. It is worth noting that this
intrinsic CAR specification permits contiguity and distance-based
weight matrices, but precludes the kth-nearest neighbor weighting
scheme as such weights violate the symmetry condition.

Although the univariate conditional prior distribution in Eq. (3)
is well defined, the corresponding joint prior distribution for s is
now improper (i.e., undefined mean and infinite variance; Sun et al.,
1999). This fact probably leads to problems in convergence and
identifiability in Bayesian estimation (Eberly and Carlin, 2000).
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