Accepted Manuscript

Title: Three dimensional hierarchical heterostructures of $g-C_3N_4$ nanosheets/TiO₂ nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light

Authors: Xuejiao Zhou, Changlu Shao, Xinghua Li, Xiaoxiao Wang, Xiaohui Guo, Yichun Liu

PII:	80304-3894(17)30755-0
DOI:	https://doi.org/10.1016/j.jhazmat.2017.10.006
Reference:	HAZMAT 18911
To appear in:	Journal of Hazardous Materials
Received date:	24-4-2017
Revised date:	28-9-2017
Accepted date:	2-10-2017

Please cite this article as: Xuejiao Zhou, Changlu Shao, Xinghua Li, Xiaoxiao Wang, Xiaohui Guo, Yichun Liu, Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light, Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2017.10.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Three dimensional hierarchical heterostructures of $g-C_3N_4$ nanosheets/TiO₂ nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light

Xuejiao Zhou, Changlu Shao*, Xinghua Li*, Xiaoxiao Wang, Xiaohui Guo, and Yichun Liu

Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun 130024, People's Republic of China Graphical Abstract

🐲 : Urea powders 🛛 : Gaseous urea molecule 🔨 : TiO₂ NFs

Highlights

- G-C₃N₄ nanosheets were grown on TiO₂ nanofibers by a facile gas-solid reaction.
- • The 3D g-C₃N₄ nanosheets/TiO₂ nanofibers had uniform hierarchical heterostructures.
- • The mass loading of g-C₃N₄ nanosheets on TiO₂ nanofibers could be controlled easily.
- The g-C₃N₄/TiO₂ hierarchical heterostructures showed superior photodegredation of RhB and H₂ evolution under visible-light.

Abstract

Graphitic C_3N_4 nanosheets were uniformly grown on electrospun TiO₂ nanofibers with three-dimensional nanofibrous networks via a facial gas-solid reaction. The mass loading of g-C₃N₄ nanosheets could be easily controlled by adjusting the mass ratios of gaseous precursors (urea) to TiO₂ NFs. The three-dimensional hierarchical heterostructures of g-C₃N₄ nanosheets/TiO₂ nanofibers could be obtained with Download English Version:

https://daneshyari.com/en/article/4979037

Download Persian Version:

https://daneshyari.com/article/4979037

Daneshyari.com