Accepted Manuscript

Title: The removal of mercury ion pollution by using

Fe₃O₄-nanocellulose: Synthesis, characterizations and DFT

studies

Authors: Saeid Zarei, Mahmood Niad, Hossein Raanaei

PII: S0304-3894(17)30758-6

DOI: https://doi.org/10.1016/j.jhazmat.2017.10.009

Reference: HAZMAT 18914

To appear in: Journal of Hazardous Materials

Received date: 13-7-2017 Accepted date: 3-10-2017

Please cite this article as: Saeid Zarei, Mahmood Niad, Hossein Raanaei, The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies, Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2017.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The removal of mercury ion pollution by using Fe₃O₄-nanocellulose:

Synthesis, characterizations and DFT studies

Saeid Zarei^{1*}, Mahmood Niad¹, Hossein Raanaei²

¹Department of Chemistry, Persian Gulf University, Bushehr 75169, Iran

²Department of Physics, Persian Gulf University, Bushehr 75169, Iran

*Corresponding author tel +987731222221

E-mail address: zsaeid6@gmail.com (S. Zarei)

Abstract

In this study, we have attempted to extract cellulose from Cystoseria myricaas algae.

Nanocellulose, Fe₃O₄ and Fe₃O₄-nanocellulose compounds are synthesized by acid hydrolysis

and co-precipitation as well as sol-gel methods. The synthesized compounds are characterized

by x-ray diffraction, transmission electron microscopy, particle size distribution (PSD),

scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, vibrating sample

magnetometer and Fourier transform infrared spectroscopy. The Hg (II) uptake on Fe3O4-

nanocellulose is investigated by 14 isotherm models, 12 kinetic models, adsorption activation

energy as well as thermodynamic of adsorption. The polymers of algae and the interactions

between Hg (II) and cellulose are investigated by density functional theory (DFT) in various

conditions. The results of both simulations show a good agreement with experimental data.

Download English Version:

https://daneshyari.com/en/article/4979050

Download Persian Version:

 $\underline{https://daneshyari.com/article/4979050}$

Daneshyari.com