Accepted Manuscript

Title: TiO_2 nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve *Corbicula fluminea*

Authors: Xiulei Fan, Chao Wang, Peifang Wang, Bin Hu, Xun Wang

PII:	S0304-3894(17)30549-6
DOI:	http://dx.doi.org/doi:10.1016/j.jhazmat.2017.07.041
Reference:	HAZMAT 18733
To appear in:	Journal of Hazardous Materials
Received date:	21-3-2017
Revised date:	18-7-2017
Accepted date:	19-7-2017

Please cite this article as: Xiulei Fan, Chao Wang, Peifang Wang, Bin Hu, Xun Wang, TiO2 nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea, Journal of Hazardous Materialshttp://dx.doi.org/10.1016/j.jhazmat.2017.07.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

TiO₂ nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve *Corbicula fluminea*

Xiulei Fan^{a,b}, Chao Wang^{a,b}, PeifangWang^{a,b,*}, Bin Hu^{a,b}, Xun Wang^{a,b}

^aKey Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China, 210098

^bCollege of Environment, Hohai University, Nanjing, People's Republic of China, 210098

*Corresponding author; E-mail: pfwang2005@hhu.edu.cn

Highlights

- Heavy metals can be adsorbed on TiO₂ NP surface in sediment.
- TiO₂ NPs in sediments changed the speciation distribution of heavy metals.
- TiO₂ NPs enhanced the bioavailability of EXC, CAR, and IMO
- TiO₂ NPs increased metals accumulation in *C. fluminea* by Trojan horse effect

Abstract

Most studies investigating the influence of TiO_2 NPs on heavy metal bioavailability have focused on the aqueous phase; however, few have examined the sediments containing more nanoparticles. Here, we investigated the effects of TiO_2 NPs on heavy metal bioavailability in *C. fluminea* in sediments. The interactions between the TiO_2 NPs and metals in sediments, the influence of TiO_2 NPs on metals levels in aqueous phase and geochemical speciation were also explored. The results indicated the large adsorption capacity of TiO_2 NPs and the strong adsorption affinity to metals caused the metals adsorbed on nanoparticles, which decreased the metals concentrations in water phase. Changes in metal speciation caused by metals in EXC, CAR, and IMO partly transported from sediments to TiO_2 NPs during the aging of sediments. Heavy metals contents in *C. fluminea* tissues were in the order of gill > visceral mass > mantle > foot and increased with the increasing TiO₂ NPs contents in Download English Version:

https://daneshyari.com/en/article/4979059

Download Persian Version:

https://daneshyari.com/article/4979059

Daneshyari.com