Accepted Manuscript

Title: Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate

Authors: Mingtao Zhang, Changhui Yang, Min Zhao, Linwen Yu, Kai Yang, Xiaohong Zhu, Xing Jiang

PII: S0304-3894(17)30547-2

DOI: http://dx.doi.org/doi:10.1016/j.jhazmat.2017.07.039

Reference: HAZMAT 18731

To appear in: Journal of Hazardous Materials

Received date: 24-1-2017 Revised date: 10-6-2017 Accepted date: 19-7-2017

Please cite this article as: Mingtao Zhang, Changhui Yang, Min Zhao, Linwen Yu, Kai Yang, Xiaohong Zhu, Xing Jiang, Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate, Journal of Hazardous Materialshttp://dx.doi.org/10.1016/j.jhazmat.2017.07.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate

Mingtao Zhang, Changhui Yang*, Min Zhao, Linwen Yu, Kai Yang, Xiaohong Zhu*, Xing Jiang

College of Materials Science and Engineering, Chongqing University, Chongqing 400045, PR China

*Corresponding author. E-mail address: ychh@cqu.edu.cn (C. Yang). zhuxiaohong1991@sina.com (X. Zhu).

Highlights:

- The impact of calcium sulfate on the immobilization of Cr(VI) was investigated.
- The CrO₄-U phase was formed as a primary retention phase for Cr(VI).
- The leachability of Cr(VI) was pH-dependent.
- The conversion from CrO₄-U phase to CrO₄-ettringite was discussed

ABSTRACT

This work aims to illustrate the impact of high concentrations of Cr(VI) (based on Na_2CrO_4) on the hydration assembly and microstructural development of hydrated Portland cement, and the results also present the role of calcium sulfate on the immobilization of Cr(VI) in Portland cement. The results showed that the immobilization of Cr(VI) in hydrated Portland cement was attributed to the formation of CrO_4 -U phase, a analogue of SO_4 -U phase ($3CaO \cdot Al_2O_3 \cdot CaSO_4 \cdot 0.5Na_2SO_4 \cdot 15H_2O$). The growth of CrO_4 -U phase on the surface of clinker particles formed a diffusion barrier and hence increased the setting time. Increasing the calcium sulfate dosage impaired the Cr(VI) immobilization due to the competition between CrO_4^{2-} and SO_4^{2-} integrated into the U phase. The generalized acid neutralization capacity (GANC) test indicated that the Cr(VI) leaching behavior was a function of the leachate pH value. As the pH decreased to 11.8, the CrO_4 -U phase was converted quickly to CrO_4 -ettringite, which generated a slight increase in Cr(VI) concentration. The most leaching sector, approximately 89.3% of added Cr(1) wt% of cement), was found in the pH range 11.8–10.5 due to the dissolution of secondary CrO_4 -ettringite. It could also be shown that the C-S-H had little chemical binding for Cr(VI).

Keywords: Hexavalent chromium; Portland cement; Immobilization; Calcium sulfate; U phase.

1. Introduction

Chromium is a toxic contaminant commonly generated from industrial activities, such as electroplating, leather tanning, production of pigments, stainless steels and other alloys. In the natural environment, chromium exists in several oxidation states and the most stable forms are trivalent Cr(III) and hexavalent Cr(VI). Cr(III) is low toxic and is considered as an essential trace

Download English Version:

https://daneshyari.com/en/article/4979080

Download Persian Version:

https://daneshyari.com/article/4979080

<u>Daneshyari.com</u>