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a b s t r a c t

An isogeometric boundary element method based on T-splines is used to simulate acoustic
phenomena. We restrict our developments to low-frequency problems to establish the fun-
damental properties of the proposed approach. Using T-splines, the computer aided design
(CAD) and boundary element analysis are integrated without recourse to geometry clean-
up or mesh generation. A regularized Burton–Miller formulation is used resulting in inte-
grals which are at most weakly singular. We employ a collocation-based approach to
generate the linear system of equations. The method is verified against closed-form solu-
tions and direct comparisons are made with conventional Lagrangian discretizations. It
is demonstrated that the superior accuracy of the isogeometric approach emanates from
the exact geometric description encapsulated in the T-spline. The method is then applied
to a real-world application to illustrate the potential for integrated engineering design
and analysis.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Boundary element methods (BEM) are frequently used to simulate acoustic phenomena. The method’s popularity stems
from two primary considerations:

1. BEM is a mesh reduction technique. In other words, volumetric problems can be solved on surfaces. This dramatically
reduces the complexity of the mesh generation process.

2. BEM incorporates boundary conditions posed over infinite domains. For example, for exterior acoustic problems, the
Sommerfeld radiation condition [1] at infinity is included naturally without resorting to techniques based on truncated
domain discretizations [2–5].

The initial use of BEM to solve Helmholtz problems for arbitrarily shaped bodies can be traced to [6–10] where simple
discretization procedures, based on constant and linear elements, were applied. The majority of these formulations used
a collocation-based approach while Galerkin BEM has recently gained some popularity [11–14].

To solve exterior radiation and scattering problems using integral equations, instabilities arise when the wavenumber
coincides with the eigenmodes of the corresponding interior problem. This leads to spurious results. In the literature, there
are three primary solutions to this problem:
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1. The CHIEF approach [15] places a certain number of additional collocation points at interior points resulting in an over-
determined system of equations. The advantage of this approach is the relative ease of implementation. Unfortunately,
the exact location and number of additional points that must be used is not known a priori and the condition number
of the resulting linear system suffers.

2. The Burton–Miller (BM) formulation [16] combines an additional boundary integral equation with the original boundary
integral equation. The resulting linear combination is stable. Difficulties arise during implementation, however, since
hypersingular integrals must be evaluated which impose additional continuity constraints on the approximation of the
acoustic potential.

3. The Green’s function is modified in such a way as to render it stable [17,18]. This approach is only valid for a restricted
range of wavenumbers.

Due to its robustness and rigorous mathematical foundation, the BM approach is chosen in the present study. As shown in
Section 5, the hypersingular nature of the formulation can be reduced to that of a weakly singular formulation by an appro-
priate regularization technique. This is possible due to the smoothness inherent in T-spline discretizations.

Recent work on the acoustic boundary element method has focused on solving high-frequency problems [19–23,14,24].
Much attention has also been given to acceleration strategies such as the fast multipole method (FMM) [25] applied to the
Helmholtz equation [26–28] and hierarchial matrices and adaptive cross approximation techniques [29,30]. These methods
are most commonly used to solve problems posed over extremely fine discretizations of three-dimensional geometries.

Despite the obvious link with CAD surface technology little attention has been given to establishing a fully integrated
BEM/CAD solution. Several early efforts applied B-splines and BEM to solve Laplace problems [31–35]. Later, a stronger link
with CAD was established through the so called ‘‘NURBS panel method’’ [36–38]. Recently, several authors have used NURBS
for geometry representation while using a Lagrangian basis for approximation [39,40].

The successful coupling of T-spline CAD surfaces, isogeometric analysis, and BEM has demonstrated that a completely
integrated BEM/CAD technology is feasible [41]. In isogeometric analysis, the geometric basis is used as the finite element
basis [42]. In the context of surface-based analysis technologies like BEM, the mesh generation and geometry clean-up steps
are eliminated if the underlying CAD geometry is analysis-suitable. In this way, the exact geometric description is embedded
in the analysis. Research efforts in isogeometric BEM are expanding rapidly [43–49].

Although predominant in CAD, NURBS descriptions of geometry are often not analysis-suitable. Complex NURBS models
are comprised of many NURBS patches which are usually discontinuous across patch boundaries. Due to the tensor product
nature of NURBS local refinement is also not possible, a particularly vexing shortcoming from an analysis standpoint [50]. T-
splines [51–53] overcome these shortcomings. Complex T-spline geometry is described by a single watertight surface. Effi-
cient procedures also exist for T-spline local refinement [54–56]. Additionally, NURBS are a proper subset of T-splines which
make T-splines fully compatible with NURBS-based technology. These properties make T-splines an ideal partner for isogeo-
metric boundary element methods. In the context of isogeometric analysis T-splines have been successfully applied in var-
ious settings including elasticity [50,54], shells [57], fluid–structure interaction [58], electromagnetics [59], fracture and
damage [60–62], and contact [63].

2. Structure, content and notation of the paper

This paper is structured as follows. First, the conventional Helmholtz boundary integral equation is presented, the Bur-
ton–Miller approach, required for a stable formulation of exterior problems, is described, and the use of a regularization
technique to reduce all integrals to at most, weakly singular, is formulated. A brief introduction to T-spline discretizations
is then presented. Finally, the method is applied to several three-dimensional acoustic problems. A direct comparison is
made with conventional Lagrange BEM discretizations. All problems considered in the present work are restricted to low
frequencies with no modifications made to basis functions to account for the oscillatory nature of acoustic solutions. High
frequency problems are excluded in this study and form a subject for future research.

We adopt the notation presented in [41] in this paper. The following definitions are used: d is the polynomial degree
(which, for T-splines, is equal to three), i; j ¼ 1;2;3 are indices for the spatial components of vectors and tensors, n is used
to denote the number of global T-spline basis functions, nel is the number of elements, and nen is the number of non-zero
T-spline basis functions over a particular element e. Uppercase indices imply a global index, while lowercase indices imply
a local index. The present study is focused entirely on three-dimensional problems. Boldfont letters are used to indicate vec-
tors and matrices where dimensions are implied.

3. The Conventional Boundary Integral Equation for Helmholtz problems

Given a domain X � R3 with boundary C � @X, the boundary integral equation for the Helmholtz equation is defined as

CðsÞ/ðsÞ þ @Gðs;xÞ
@n

/ðxÞdCðxÞ ¼
Z

C
Gðs;xÞ @/ðxÞ

@n
dCðxÞ ð1Þ
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