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Abstract

A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computa-
tional homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version —
that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the
other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only
POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the
approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points
are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in
the homogenization of a highly complex porous metal material. Computed results show that computational complexity
is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over
three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than
10%.
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1. Introduction

1.1. Motivation and goal

The major challenge in the macro-scale continuum description of heterogeneous materials such as compos-
ites and polycrystalline metals (that exhibit a clear heterogeneous composition at the micro-, or meso-, scale,
but that can be regarded, for practical purposes, as homogeneous at the macro-scale) lies in the determination
of a constitutive connection, between macro-stresses and macro-strains, that accurately reflects the properties
and geometrical arrangement of the distinct phases at the finer scale. It is well-known [34] that, under the
hypotheses of either periodicity or statistical homogeneity, on the one hand; and scale separation, on the
other hand, this constitutive link can be systematically established by solving, for each point at the coarse
scale, a boundary value problem (BVP) on a certain representative microscopic subdomain. In a strain-
driven formulation of this BVP, the macro-strain at a given point acts as “loading parameter”, in the form
of appropriate essential boundary conditions, whereas the associated macro-stress is obtained through
volume averaging — i.e., homogenization — of the corresponding micro-stress field.

Methods dealing with the solution of this BVP range from purely analytical approaches to direct computa-

tional methods, such as the two-level, Finite Element (FE2) method [29]. Analytical approaches are
computationally inexpensive, but only valid for certain types of geometrically and constitutively simple
micro-structures. By contrast, direct computational methods have no other limitation in scope than the
imposed by the aforementioned hypotheses of statistical homogeneity and scale separation — in these
methods, the microscopic BVP at each coarse-scale point is attacked using no other approximation than
the spatial discretization of the pertinent solution strategy, thus, circumventing the need for introducing ad-
hoc, simplifying assumptions regarding the topological arrangement of the micro-phases and/or their
collective constitutive behavior. Needless to say, the versatility of direct computational homogenization
comes at a significant price: its enormous computational cost.

Between these two extremes (purely analytical and direct computational methods), there are homogeniza-
tion strategies that can be termed semi-analytical, since they combine analytical results with numerical com-
putations. Such is the case of the Transformation Field Analysis (TFA) [25] and variants thereof [48,49,55,30],
which are based on the pre-computation of certain characteristic operators (strain localization and influence
tensors) using the information obtained from solving a carefully chosen battery of fine-scale BPVs. Although
these methods have notably widen the scope of classical analytical approaches — while maintaining their low
computational cost — they are still predicated, to a lesser or greater extent, on ad-hoc assumptions connected
with the constitutive description of the involved phases. Consideration of new materials with unstudied com-
positions using semi-analytical approaches, thus, requires additional research efforts by specialists in the field
and eventual modifications of the corresponding mathematical and numerical formulations — in contrast to
direct computational homogenization approaches, such as the FE2 method, in which the formulation is “mate-
rial-independent”, and hence more versatile.

The current state of affairs in the field of two-scale homogenization seems to call, thus, for a unified homog-
enization approach that combines somewhat the advantages of direct computational homogenization and
analytical and semi-analytical techniques. It would be desirable to have a homogenization method with a com-
putational cost virtually independent of the geometric complexity of the considered representative volume, as in
analytical and semi-analytical techniques. At the same time, it would be also interesting to arrive at a method
whose mathematical formulation dispenses with ad-hoc, simplifying assumptions related with the composition
of the heterogeneous material; i.e., one enjoying the versatility, unrestricted applicability and “user-friendli-
ness” — insofar as it would totally relieve the modeler from the often exceedingly difficult task of visualizing
such assumptions — of direct computational homogenization methods. The goal of the present paper is to
show that these desirable attributes can be achieved, for arbitrarily complex heterogeneous materials well into

the inelastic range, by using the so-called [46] reduced-basis (RB) approximation in the solution of the fine-scale
BVPs.

150 J.A. Hernández et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 149–189



Download English Version:

https://daneshyari.com/en/article/497930

Download Persian Version:

https://daneshyari.com/article/497930

Daneshyari.com

https://daneshyari.com/en/article/497930
https://daneshyari.com/article/497930
https://daneshyari.com

