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Abstract

In the attempt to extend the life of a structure, or a component, which is subjected to cyclic loading history it is
important to provide safety margins against excessive inelastic deformations. Direct methods and in particular shakedown
analysis provide the only means towards this end. Most of the approaches in shakedown analysis are based on the two
theorems of plasticity and are tuned with the solution of optimization algorithms. In this paper a new method is presented
which approaches the problem in a different way. The method makes use of a recently published direct method, called the
Residual Stress Decomposition Method (RSDM), which assumes the decomposition of the residual stresses into Fourier
series in time. The RSDM may predict any cyclic elastoplastic state for a given cyclic loading history. With the present
approach a loading of prescribed limits is converted to an equivalent loading which has a prescribed time history. The pro-
cedure approaches the shakedown loading from above starting from a loading factor that makes the whole structure plas-
tic. The procedure generates a descending sequence of loading factors which shrinks the load domain until the only
remaining term of the Fourier series is the constant term. It is formulated within the finite element (FE) method and
an elastic-perfectly plastic material with a von Mises yield surface is assumed. It may be directly implemented in any
FE code. The versatility of the approach is shown through examples of application.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The high level of loadings, that most civil and mechanical engineering structures are subjected to, force
them to develop irreversible strains, such as plastic strains. For civil engineering structures, like bridges,
pavements, buildings, and offshore structures, such typical loadings are heavy traffic, earthquakes or waves.
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On the other hand, the coexistence of thermal and mechanical loadings on mechanical engineering structures,
like, for example, nuclear reactors and aircraft propulsion engines, leads them also to stress regimes well
beyond their elastic limit.

When the exact loading history is known, one may estimate the long term behavior of a structure on the
basis of cumbersome time stepping calculations. A much better alternative, that requires much less computing
time, is offered by the direct methods that may predict whether, under the given loading, the structure will
become unserviceable due to collapse or excessive inelastic deformations. Moreover, it very often happens that
the complete time history of loading is not known, but only its variation intervals. In these cases, direct meth-
ods are the only way to establish safety margins.

Based on the fact that for structures made of stable materials [1] an asymptotic state exists, direct methods
try to estimate this state right from the start of the calculations. Typical examples of such methods are the limit
analysis for monotonic loading and the shakedown analysis for loading varying cyclically. For small displace-
ments and elastic-perfectly plastic solids the search for an elastic shakedown state is normally based on the
lower bound [2] or the upper bound [3] theorems.

Since these two seminal works, many extensions were made to include other effects, for example, geometric
nonlinearities (e.g. [4–6]). Conditions for extending the static theorem to elastic-perfectly plastic cracked
bodies have been presented in [7].

Concerning extensions of elastoplastic material behavior, various researchers have also studied limited lin-
ear (e.g. [8,9]) and nonlinear kinematic hardening (e.g. [10–12]). Recent developments on the subject have
appeared in [13].

Non associated plasticity has also been addressed (e.g. [14–17]). Furthermore, shakedown theorems have
also been formulated within the framework of gradient plasticity concepts [18]. Finally, non-stationary loads
have also been considered (e.g. [19,20]).

Most of the numerical approaches towards the solution of the shakedown problem are based on either the
lower or the upper bound theorems. They are cast in the form of mathematical programming (MP) aiming to
minimize or maximize an objective function which normally represents the loading factor. Depending on
whether the objective function and/or the constraints are linear or nonlinear the problem can be formulated
as a linear (LP) (e.g. for early works [21,22]) or a nonlinear (NLP) programming problem (e.g. for an early
work [11]). The discretization of the continuum by a large number of finite elements and the big number of
constraints often lead to the solution of large size optimization problems. To solve these problems various
numerical techniques have been developed. One may mention here the reduced basis technique (e.g. [23,24])
or algorithms based on Newton iterations (e.g. [25,26]). The optimization problem was solved in [27] based
on the augmented Lagrangian combined with the BFGS method. The evolution of the interior point algo-
rithms (IPM) to solve large scale optimization problems led to the extensive formulation and solution of limit
and shakedown analysis problems using these algorithms or related techniques (e.g. some representative pub-
lications [28–38]). In these works various applications of these procedures in many fields of solid and soil
mechanics have been explicitly reported. For most recent applications one may look at [39].

Very few alternative approaches to finding the stationary point of an objective function exist in the litera-
ture for the evaluation of the shakedown load. One such approach is the eigen-mode method [40]. Also, a quite
involved algorithm which is based on arc length techniques and is compared against the IPMs is presented in
[36]. Another approach that uses internal variables, each of which corresponding to an inelastic mechanism, is
presented in [41,42]. Using more physical arguments, the linear matching method (LMM) (originated in [43])
is a generalization of the elastic compensation method (e.g. [44,45]) and is based on matching a linear problem
to a plasticity problem. It is an upper bound approach that generates a sequence of linear solutions, with spa-
tially varying moduli, which converges to either the collapse load [46] or the shakedown load (e.g. [47,48]) of
solid mechanics problems. Recent publications include applications to steel pipes [49] and concrete beams [50].
The method has also been carried over to shakedown problems in soil mechanics (e.g. [51,52]). It has also been
extended beyond shakedown to provide an estimation of the ratchet boundary for a loading that can be
decomposed into constant and time varying components ([53,54]). A recent update of the method has
appeared in [55]. In [56] a numerical procedure was presented that uses the same loading assumptions.

A relatively simple direct method, called the Residual Stress Decomposition Method (RSDM), was pre-
sented recently [57,58] that may predict the long-term cyclic state of an elastic perfectly-plastic structure when
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