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Abstract

In this article, we discuss an approach for geometry and topology optimization of structures which benefits from an accurate
description of shapes at each stage of the iterative process – by means of a mesh amenable for mechanical analyses – while retaining
the whole versatility of the level set method when it comes to accounting for their evolution. The key ingredients of this method
are two operators for switching from a meshed representation of a domain to an implicit one, and conversely; this notably brings
into play an algorithm for generating the signed distance function to an arbitrary discrete domain, and a mesh generation algorithm
for implicitly-defined geometries.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In the simulation of a free or moving boundary problem driven by a physical motion, one usually has to reconcile
numerical accuracy with robustness: the more faithful the representation of the tracked boundary, the more accurate
the computation of the motion (i.e. the velocity field driving the motion), and unfortunately, the more tedious the
numerical implementation. This issue is especially critical in shape optimization which features problems where the
changes in geometry and topology of shapes in the course of the evolution are often dramatic.

Roughly speaking, in the field of shape and topology optimization, three main classes of techniques can be
distinguished, depending on the description of shapes they involve:

• Density-based methods, such as the SIMP method [1] or the homogenization method [2,3], transform the problem
of finding the optimal shape Ω ⊂ Rd with respect to a mechanical criterion J (Ω) into that of finding the optimal
density function ρ : D → [0, 1] of a mixture of material and void inside a fixed working domain D. The shape
optimization problem has to be translated into this rather different setting, but the main difficulties are the absence of
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a clear definition of the shape boundary and the penalization process which, in the end, should deliver a ‘classical’
shape without intermediate densities.

• Eulerian methods, such as the phase field method [4], or the level set method [5–8] account for shapes in an implicit
way; for instance, in the latter case, a large, fixed working domain D, meshed once and for all is introduced, and a
shape Ω ⊂ D is described in terms of a scalar function φ : D → R whose negative subdomain matches with Ω .
Finite element analyses cannot be performed directly on Ω since it is not meshed exactly, and approximations have
to be made to trade mechanical problems posed on Ω for problems posed on D. The most notorious of them is the
so-called Ersatz material approach, which consists in filling the ‘void’ D \ Ω with a very soft material to avoid
degeneracy in the stiffness matrix (however, alternatives exist, which are based on e.g. the immersed boundary
method [7], or the XFEM method [9,10]).

• Lagrangian methods are perhaps the most natural ones and date back to the early hours of computational structural
optimization [11,12]; shapes are represented by means of a computational mesh (or a CAD model [13]), which
enables accurate mechanical analyses. The general drawback of this class of methods lies in that this mesh (or
whatever explicit representation of shapes is used) has to be updated in the course of the optimization process,
which is a notoriously difficult operation, especially in 3d. Note that there is still ongoing research in this
direction [14–16].

Of course, this rough classification ignores the numerous particular instances of each category of methods and
combinations between them (see the recent review papers [17,18] for a stronger emphasis on level-set based structural
optimization).

In the present paper, we describe in details our work, briefly announced in [19,20], and propose a shape optimization
strategy which benefits from the flexibility of the level set method for tracking evolution of shapes, including
topological changes, while enjoying an exact, meshed description of shapes. In a nutshell, our approach relies on
a level set description of a shape under evolution as a guide for driving the usual mesh operators (edge split, edge
collapse, etc...) involved in the update of its mesh. It can be regarded as a systematic and robust way of modifying
and controlling the level of detail of this mesh. While they rely on similar mesh operations, Lagrangian methods such
as the one presented in [15] generally prove more combinatorial (especially when it comes to the case of three space
dimensions), since they use heuristics to avoid producing an invalid mesh or to account for topological changes in the
shape.

Admittedly, the idea of combining an implicit domain evolution method with an explicit type of shape
representation is not new: in the two-dimensional work [21], the evolution of shapes is tracked on a triangular mesh
T of a working domain D owing to the level set method, and at each iteration of the process, an exact mesh of the
current shape Ω is obtained by relocating vertices of T onto ∂Ω . In [22], a similar strategy is applied for dealing with
the motion of shapes; a computational mesh for any shape Ω arising during the process is then constructed by first
identifying the intersection points of the implicitly-defined boundary ∂Ω with the edges of the computational mesh T
of D, then using them as an input for a Delaunay-based mesh generation algorithm. Last but not least, let us mention
the work in [23] (Chap. 5), taken over in [24], in which the evolution of shapes is dealt with by using the level set
method on a finite difference grid of the working domain D, and an original meshing algorithm for implicit geometries
is used to get an exact representation of shapes. The precisely calculated shape gradient must then be projected back
to the Cartesian grid of D to close the loop.

Our method has something in common with this last work: a computational domain D is defined, and is equipped
with an unstructured mesh which is modified from one iteration of the algorithm to the next, in such a way that any
shape Ω arising in the course of the process is explicitly discretized in this mesh—i.e. the vertices, edges, faces (and
tetrahedra in 3d) of a mesh of Ω also exist as elements of the ambient mesh of D. In such a configuration, we shall
also say that (a mesh of) Ω exists as a submesh of that of D. This kind of representation allows for accurate finite
element analyses, held on a well-defined, high-quality mesh of Ω (which is possibly adapted to an error estimate
for the mechanical problem at stake), and lends itself to the use of the level set method in an unstructured mesh
framework, to account for large shape deformations (including possible topological changes). It relies crucially on
efficient algorithms for moving back and forth, from a situation where a shape Ω is known as a submesh of the
computational mesh of D to a level set description of Ω on a (unstructured) mesh of D.

This strategy presents several attractive assets; first, no projection between different meshes is needed between
the computation of a descent direction for the considered objective function of the domain (which occurs when the
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