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a b s t r a c t

A methodology for dynamic analysis of a poroelastic layered half-space is proposed. A poroelastic layered
half-space is discretized with regular thin layers to a certain depth. Below the layers, continued-fraction
absorbing boundary conditions (CFABCs) which are accurate and effective in modeling wave propagation
in various unbounded domains are applied in order to represent the infinite extent of the half-space. With
the representation, a spectral decomposition which is an effective approach in the solution of wave-prop-
agation problems is utilized. Green functions of a poroelastic layered half-space are obtained accurately
with the proposed numerical model. The Green functions can be applied to various dynamic problems in
the half-space including foundation dynamics and soil–structure interaction problems.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation in poroelastic layered media is relevant in
seismology, civil engineering, geotechnical engineering, and petro-
leum engineering. Typical examples are analysis of dynamic soil–
structure interaction for structures built in poroelastic layered
ground and subsurface imaging to understand deep geologic struc-
tures and explore hydrocarbon deposits. In order to examine exact
dynamic behaviors of the media, analytical solutions and numeri-
cal methods have been developed.

Most studies on poroelastic media are based on Biot’s theory
[1,2]. It was shown in early research that there are three kinds of
waves in the medium, i.e. P1, P2, and S waves. The effects of various
boundary or interface conditions on wave propagations in the
medium were studied in a series of papers by Deresiewicz and
his co-workers [3–12]. Based on Biot’s theory, fundamental solu-
tions in a poroelastic full space have been obtained for various
wave-propagation problems. Fundamental solutions for a point
force in the solid component were obtained by Burridge and Vargas
[13] and Philippacopoulos [14], those for a point force in both the
solid and the fluid components by Norris [15] and Kaynia and

Banerjee [16], 2.5-D solutions by Lu et al. [17], transient solutions
for 2-D and 3-D continua by Chen [18,19], and solutions in a trans-
versely isotropic poroelastic material by Kazi-Aoual et al. [20]. A
system of boundary integral equations and fundamental solutions
were derived in the Laplace transformed domain and an analogy
between poroelastodynamics and thermoelasticity was drawn by
Manolis and Beskos [21]. Bonnet [22] also obtained fundamental
solutions from the analogy. A direct boundary element approach
and fundamental solutions in the time domain were developed
by Wiebe and Antes [23].

Solutions in a poroelastic half-space have been obtained for
various wave-propagation problems. Half-space solutions for an
impulsive line load and a circular uniform surface load on the so-
lid constituent were derived by Paul [24,25], solutions for trac-
tions in the solid and fluid by Halpern and Christiano [26],
solutions for buried loads in a homogeneous poroelastic half-
space by Senjuntichai and Rajapakse [27], solutions in a layered
half-space by Rajapakse and Senjuntichai [28] and Degrande
et al. [29], and solutions in a 3-D poroelastic half-space by Jin
and Liu [30]. Philippacopoulos [31] solved Lamb’s problem for
poroelastic half-space.

Numerical methods as well as analytical solutions for an infinite
poroelastic domain have been developed. Zienkiewicz et al. [32]
and Lewis and Schrefler [33] presented finite element formulations
for a poroelastic medium. Special treatments must be considered
in order to represent an infinite medium within the framework
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of the finite element method. Degrande and De Roeck [34] pre-
sented an absorbing boundary condition which corresponds to a
viscous boundary condition for an elastic medium. An infinite ele-
ment was formulated by Khalili et al. [35]. Boundary element for-
mulations which are suitable for an infinite medium have been
presented as well. Boundary element approaches were obtained
in the Laplace transformed domain by Manolis and Beskos [21],
in the frequency domain by Cheng et al. [36] and Domínguez
[37] and in the time domain by Wiebe and Antes [23] and Chen
and Dargush [38]. Rajapakse and Senjuntichai [39] developed an
indirect boundary integral equation method for quasi-static,
time-harmonic and transient boundary value problems. A compre-
hensive review on poroelastodynamics can be found in the paper
by Schanz [40].

Since wave propagation in elastic or poroelastic layered media is
relevant in many applications, as mentioned above, many
researchers have studied the topic and developed various methods.
Thomson [41] and Haskell [42] presented formulations for wave
propagation in elastic layered media based on transfer matrices.
Kausel and Roësset [43] presented an alternative method using
stiffness matrices. The stiffness-matrix approach was extended to
poroelastic media by Rajapakse and Senjuntichai [28] and De-
grande et al. [29]. Since transcendental functions appear in the
stiffness matrices for finite layers, closed-form solutions are possi-
ble only for problems of simple geometries by contour integration.
General solutions for arbitrary layered media can be obtained by
numerical integration over a wavenumber domain. The numerical
method usually involves spatial aliasing or numerical errors asso-
ciated with either truncation or the large and rapid oscillations
of the kernels.

If the transcendental functions in the stiffness matrices are rep-
resented by means of Taylor series expansions, the numerical inte-
gration can be avoided and the integral transform can be evaluated
exactly. Subdividing a finite layer into several thin layers of thick-
nesses small compared to the minimum wavelength of interest and
adopting simple interpolation functions in the direction of layer-
ing, the transcendental functions can be avoided and discrete layer
stiffness matrices can be obtained [43]. It can be shown easily that
the subdivision is equivalent to a representation of the transcen-
dental functions in Taylor series expansions [44]. The discrete stiff-
ness matrices can be written as quadratic functions of a horizontal
wavenumber. From the discrete stiffness matrices, a quadratic
eigenvalue problem can be formulated and the spectral decompo-
sition can be applied in order to obtain wave modes in layered
media. Using the wave modes, the integral transforms can be eval-
uated exactly [45,46]. The method based on the spectral decompo-
sition of the discrete stiffness matrices is referred to as a ‘thin-layer
method’. Since the method leads to appropriate and effective
numerical models, it has been applied to the analysis of various
layered systems [43,45–60].

But the method based on the spectral decompositions requires
special care when applied to problems in a layered half-space. The
half-space is usually replaced by a layered stratum on rigid bedrock
at sufficient depth. However, the fixed boundary condition can lead
to unsatisfactory results, especially at low frequencies, if the depth
of the stratum is not sufficient. To overcome this difficulty, sec-
ond-order paraxial approximations of exact half-space conditions
[56,57] and continued-fraction absorbing boundary conditions
(CFABCs) [61,62] have been implemented in order to enhance the
method based on the spectral decomposition [56–60]. Since the
CFABCs are accurate and effective in modeling wave propagation
in various unbounded domains [61–68], it is desirable to apply the
CFABCs in the framework of the spectral decomposition.

In this study, CFABCs for poroelastic media are combined with
the discrete stiffness matrices and the spectral decomposition is
utilized in order to solve wave-propagation problems in a poro-

elastic half-space. In Section 2, the exact dynamic stiffness for the
half-space and CFABCs are briefly reviewed. Representation of
the half-space by CFABCs is proposed and its spectral characteris-
tics are examined in Section 3. In Section 4, wave-propagation
problems are solved using the developed numerical models. The
paper will be summarized in Section 5.

2. Exact dynamic stiffness and continued-fraction absorbing
boundary conditions for a poroelastic half-space

The governing equations for a poroelastic medium in a rectan-
gular Cartesian coordinate system can be written using the gener-
alized theory of Biot [1,2,32,33]:

For i, j = x, y, or z

lui; jj þ kþ lþ Qa2� �
uj; ji þ Qawj;ji � q€ui � qw €wi ¼ 0 ð1aÞ

Qauj; ji þ Qwj; ji � qw€ui �
qw

n
€wi � f _wi ¼ 0 ð1bÞ

where ui denotes the displacement of the solid skeleton; wi the rela-
tive displacement of the fluid with respect to the solid skeleton mul-
tiplied by the porosity; k andl Lamé constants of the solid skeleton; Q
and a parameters accounting for the compressibility of the two-
phase medium; qw the density of the fluid; q = (1 � n)qs + nqw the
averaged density of the mixture in whichqs is the density of the solid;
n the porosity; and f = 1/j, in which j is the permeability. Using the
Helmholtz decomposition, solutions of the governing equations can
be expressed in terms of potentials for P and S waves. Applying
boundary and radiation conditions of a poroelastic half-space, its ex-
act dynamic stiffness was derived [56,57]. Using the exact dynamic
stiffness, wave-propagation problems in a poroelastic half-space
can be solved by an integral transform technique [28,34]. However,
since the exact dynamic stiffness is not a polynomial function of a
horizontal wavenumber, it is difficult to utilize the spectral decompo-
sition [45,46] in the solution of wave-propagation problems.

In order to simulate wave propagation in an infinite media, con-
tinued-fraction absorbing boundary conditions were developed
[61,62]. Since the CFABCs can be cast as quadratic functions of a
horizontal wavenumber, they can be effectively applied into the
framework of the spectral decomposition [58]. Derivation of the
CFABCs can be summarized as follows. A half-space is split into a
layer and another half-space. Displacements are assumed to vary
linearly in the layer and its dynamic stiffness is obtained following
the Galerkin approach with the mid-point integration rule. Then,
the layer-half-space system represents exactly the original half-
space. Applying layers successively in this way, the half-space
can be represented as a series of the layers. Since the dynamic stiff-
ness of the layers can be expressed in a continued-fraction form,
they can be referred to as continued fraction absorbing boundary
conditions. Therefore, the exact dynamic stiffness of a half-space
can be represented by the CFABCs.

Herein, the exact stiffness and CFABCs are briefly summarized
for plane-strain and antiplane-shear problems, respectively.

2.1. Poroelastic half-space in plane strain

For a plane-strain condition, solutions of Eq. (1) are given in
terms of potentials for P1, P2, and SV waves. Assuming x-harmonic
and time-harmonic motions with wavenumber k and frequency x,
dynamic stiffness of the half-space in plane strain (Fig. 1a) can be
obtained [56]:
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