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a b s t r a c t

In this work we present the application of isogeometric collocation techniques to the solution of spatial
Timoshenko rods. The strong form equations of the problem are presented in both displacement-based
and mixed formulations and are discretized via NURBS-based isogeometric collocation. Several numerical
experiments are reported to test the accuracy and efficiency of the considered methods, as well as their
applicability to problems of practical interest. In particular, it is shown that mixed collocation schemes
are locking-free independently of the choice of the polynomial degrees for the unknown fields. Such
an important property is also analytically proven.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Isogeometric Analysis (IGA), introduced by Hughes et al.
[18,24], is a powerful analysis tool aiming at bridging the gap be-
tween Computational Mechanics and Computer Aided Design
(CAD). In its original form IGA has been proposed as a Bubnov-
Galerkin method where the geometry is represented by the spline
functions typically used by CAD systems and, invoking the isopara-
metric concept, field variables are defined in terms of the same
basis functions used for the geometrical description. This could
be therefore viewed as an extension of standard isoparametric
Finite Element Methods (FEM), where the computational domain
exactly reproduces the CAD description of the physical domain.
Moreover, recent works on IGA have shown that the high regular-
ity properties of the employed functions lead in many cases to
superior accuracy per degree of freedom with respect to standard
FEM (cf., e.g., [12,19,25,31,32]). Given these unique premises, IGA
has been adopted in different fields of Computational Mechanics,
and the properties and advantages of this more than promising
approach have been successfully tested and analyzed both from
the practical and mathematical standpoints (see, among others,
[2,5–11,13–15,20,22,26,28–30,33,34]).

The original basic concept of IGA (i.e., the use of basis functions
typical of CAD systems within an isoparametric paradigm) can be
also exploited beyond the framework of classical Galerkin meth-
ods. In particular, isogeometric collocation schemes have been re-
cently proposed in [3], as an appealing high-order low-cost
alternative to classical Galerkin approaches. Such techniques have
also been successfully employed for the simulation of elastostatic
and explicit elastodynamic problems [4] and their application to
many other applications of engineering interest is currently the ob-
ject of extensive research.

Within this context, a comprehensive study on the advantages
of isogeometric collocation over Galerkin approaches is reported
in [32], where the superior behavior in terms of accuracy-to-com-
putational-time ratio guaranteed by collocation with respect to
Galerkin is revealed. In the same paper, adaptive isogeometric col-
location methods based on local hierarchical refinement of NURBS
are introduced and analyzed, as well.

In view of the results briefly described above, isogeometric col-
location clearly proposes itself as a viable and efficient implemen-
tation of the main IGA basic concepts.

In addition to this, isogeometric collocation has shown a
remarkable and, to our knowledge, unique property when em-
ployed for the approximation of Timoshenko beam problems. In
fact, it has been analytically proven and numerically tested in
[16] that mixed collocation schemes for initially straight planar
Timoshenko beams are locking-free without the need of any
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compatibility condition between the selected discrete spaces. We
highlight that this appealing property is deeply linked to the collo-
cation approach adopted and not only a consequence of the isogeo-
metric paradigm.

Moving along this promising research line, in the present paper,
we aim at extending such results to the more interesting case of
curved spatial Timoshenko rods of arbitrary initial geometry, lim-
iting the discussion to the case of small displacements and dis-
placement gradients.

The outline of the paper is as follows. In Section 2, we present
the mechanical model of spatial Timoshenko rods and introduce
the strong form formulation of the problem, in both displace-
ment-based and mixed forms. Section 3 gives a brief review of
one-dimensional B-Splines and NURBS as basis for isogeometric
analysis. In Section 4, isogeometric collocation is introduced and
collocation schemes for spatial Timoshenko rods are explained in
detail. The proposed methods are tested on several numerical
examples in Section 5, confirming their accuracy and showing pos-
sible applications. It is shown that collocation methods based on
mixed formulations are locking-free for any choice of polynomial
degrees for the different fields. This characteristic is also analyti-
cally proven by a theoretical convergence analysis in Section 6.
Conclusions are finally drawn in Section 7.

2. The spatial Timoshenko rod equations

In the following we want to introduce a model describing a spa-
tial rod, as, for example, the one reported in Fig. 1, which is
clamped on the lower end and subjected to an external distributed
load as well as concentrated loads and moments on the upper end.
The model is developed under the assumptions of small displace-
ments and displacement gradients, assuming a first-order Timo-
shenko-like shear deformation and following the approach
proposed in [1].

2.1. Geometry description

The rod geometry is described by a spatial curve c(s). The curve
parameter s is chosen to be the arc-length parameter and we de-
note with ()

0
the derivative with respect to the arc-length parame-

ter, i.e., ()
0
= d/ds. The unit tangent vector of the curve at a point c(s)

is defined by

tðsÞ ¼ c0ðsÞ ¼ dcðsÞ
ds

; for s 2 ½0; l�; ð1Þ

where l > 0 denotes the curve length. Fig. 2 shows a part of the curve
of Fig. 1 from c(0) up to an arbitrary location c(s), along with the po-
sition vector and the unit tangent vector. In the following, all vari-
ables are assumed as functions of the arc-length parameter s (unless
otherwise specified) also if we omit to explicitly indicate such a
dependency.

2.2. Kinematic equations

Adopting a Timoshenko beam-like model, the rod deformation
can be described by the centerline curve c, a displacement vector
v, and a rotation vector u. Accordingly, we may introduce the gen-
eralized strains e and v, respectively defined as the vector of trans-
lational (axial and shear) strains and the vector of rotational
(torsional and flexural) strains. In particular, the translational
strains are obtained by the first derivative of the displacements
subtracting the rigid body rotations, whereas the rotational strains
are obtained by the first derivatives of the rotations:

e ¼ v0 �u� t; ð2Þ
v ¼ u0: ð3Þ

2.3. Constitutive equations

As usual for rod formulations, we introduce a vector n of inter-
nal forces and a vector m of internal moments. In the following, we
assume a linear elastic constitutive relation in the form:

n ¼ Ce; ð4Þ
m ¼ Dv: ð5Þ

Using an intrinsic basis, i.e., a basis composed by three orthogonal
unit vectors with the first one equal to the tangent vector, the mate-
rial matrices C and D are defined by:

C ¼ diag ½EA;GA1;GA2�; ð6Þ
D ¼ diag ½GJ; EI1; EI2�; ð7Þ

where E and G are the elastic and the shear modulus, A the cross
sectional area, A1 = k1A and A2 = k2A (being k1 and k2 the shear
correction factors), J the torsion constant and I1 and I2 the second
moments of inertia. Within such a formulation, the components
of n represent the axial force and the two components of the shear
force, respectively, while the components of m represent the tor-
sional moment and the two components of the bending moment,
respectively.

f(s)

n
_

_
m

Fig. 1. Spatial rod model. The rod in this example is clamped on the lower end,
subjected to a distributed external load f(s) and to concentrated external loads and
moments, �n and �m, respectively.
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Fig. 2. Spatial curve description with c(s) as the position vector and t(s) as the
tangent vector.
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