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a b s t r a c t

The peridynamic theory provides an appropriate description of the deformation of a con-
tinuous body involving discontinuities or other singularities, which cannot be described
properly by the classical theory of solid mechanics. However, the operator in the peridy-
namic theory is nonlocal, so the resulting numerical methods generate dense or full coef-
ficient matrices which require OðN2Þ of memory where N is the number of unknowns in the
discretized system. Gaussian types of direct solvers, which were traditionally used to solve
these problems, require OðN3Þ of operations. Furthermore, due to the singularity of the ker-
nel in the peridynamic model, the evaluation and assembly of the coefficient matrix can be
very expensive. Numerous numerical experiments have shown that in many practical sim-
ulations the evaluation and assembly of the coefficient matrix often constitute the main
computational cost! The significantly increased computational work and memory require-
ment of the peridynamic model over those for the classical partial differential equation
models severely limit their applications, especially in multiple space dimensions.

We develop a fast and faithful collocation method for a two-dimensional nonlocal diffu-
sion model, which can be viewed as a scalar-valued version of a peridynamic model, with-
out using any lossy compression, but rather, by exploiting the structure of the coefficient
matrix. The new method reduces the evaluation and assembly of the coefficient matrix
by OðNÞ, reduces the computational work from OðN3Þ required by the traditional methods
to OðNlog2NÞ and the memory requirement from OðN2Þ to OðNÞ. Numerical results are pre-
sented to show the utility of the fast method.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The classical theory of solid mechanics assumes that all internal forces in a body act through a zero distance, which leads
to mathematical models described by partial differential equations. These models do not provide a proper description of
problems with spontaneous formation of discontinuities. The peridynamic theory was proposed as a reformulation of solid
mechanics [5,13,18,27,29–32,38,39], which leads to a nonlocal or integro-differential framework that does not explicitly in-
volve the notion of deformation gradients.

http://dx.doi.org/10.1016/j.cma.2014.01.026
0045-7825/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 18037774321.
E-mail address: hwang@math.sc.edu (H. Wang).

1 Current address: Beijing Computational Science Research Center, Beijing, China.

Comput. Methods Appl. Mech. Engrg. 273 (2014) 19–36

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/ locate/cma

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.01.026&domain=pdf
http://dx.doi.org/10.1016/j.cma.2014.01.026
mailto:hwang@math.sc.edu
http://dx.doi.org/10.1016/j.cma.2014.01.026
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


The numerical solution of integral or boundary integral equations by Galerkin finite element methods or collocation
methods can at least date back to 1970s [12,19,20]. In the context of peridynamic models or their scalar-valued version non-
local diffusion models, different numerical methods, including Galerkin finite element (or weak form) methods, discontin-
uous Galerkin finite element methods, collocation (or strong form) methods, and meshfree methods, have been developed
and analyzed [3,8,10,14,21,23,26,28]. In contrast to those for classical differential equation models for solid mechanics,
the numerical methods for peridynamic or nonlocal diffusion models, as those for integral or boundary integral equations,
generate dense or full coefficient matrices which require OðN2Þ of memory where N is the number of unknowns in the dis-
cretized system. Gaussian types of direct solvers, which were traditionally used to solve these problems, require OðN3Þ of
operations. Furthermore, due to the singularity of the kernel in these models, the evaluation and assembly of the coefficient
matrix can be very expensive. Numerous numerical experiments have shown that in many practical simulations the evalu-
ation and assembly of the coefficient matrix often constitute the main computational cost! The significantly increased com-
putational work and memory requirement of these models over those for the classical partial differential equation models
severely limit the applications of peridynamics, especially in multiple space dimensions.

Much effort has been taken to reduce the computational cost and memory requirement of the numerical methods
for peridynamic or nonlocal diffusion models. A widely used simplification in the numerical simulation of peridynamic
or nonlocal diffusion methods is to assume that the horizon of the material d ¼ OðhÞ [8], where h is the mesh size.
Under this assumption, the structure of the coefficient matrix of the corresponding numerical methods for peridynamic
or nonlocal diffusion models is similar to that of high-order numerical methods for partial differential equation models.
And so are the memory requirement and computational cost of the numerical methods for a simplified nonlocal
diffusion model. However, the physical relevance of the simplification d ¼ OðhÞ is not very clear as the horizon d
represents a material property that is independent of a computational mesh size. Another indication of this inconsis-
tency is that the optimal-order error estimate for Galerkin finite element methods of full peridynamic or nonlocal
diffusion models becomes one-order suboptimal compared to those of the simplified peridynamic or nonlocal diffusion
model (refer to Section 4.2).

This paper concerns numerical methods for nonlocal diffusion models, which involve scalar fields. The proposed methods
can be extended to models involving vector fields, such as peridynamic models. The objective of this paper is not to come up
with another discretization scheme for a nonlocal diffusion model, but rather to develop a fast and faithful solution tech-
nique for an existing piecewise-bilinear collocation method for a (non-simplified) nonlocal diffusion model in two space
dimensions. We prove that for any translation-invariant kernel function and any neighborhood, the corresponding stiffness
matrix has certain block-Toeplitz-Toeplitz-block structure. Consequently, the fast method (i) reduces the evaluation and
assembly of the stiffness matrix from OðN2Þ entries to OðNÞ entries and the memory requirement from OðN2Þ entries to
OðNÞ entries; (ii) reduces the computational cost of the inversion of the numerical scheme to OðN log NÞ per iteration. The
exploration of Toeplitz and circulant matrice structures of the stiffness matrices for the reduction of computational work
and memory requirement has been one of the techniques used in the development of fast numerical methods for partial dif-
ferential equations or integral equations [2,7,15]. In the past few years one of the authors codeveloped fast finite difference
methods for space-fractional diffusion equations by proving that the corresponding stiffness matrix can be decomposed as a
sum of diagonal multiplied by Toeplitz matrices [35–37]. Recently, the authors developed a fast Galerkin finite element
method for a one-dimensional nonlocal diffusion model problem [34]. In this paper we develop a fast and faithful piece-
wise-bilinear collocation method for a two-dimensional nonlocal diffusion model problem by exploiting a block-Toeplitz-
Toeplitz-block structure of the stiffness matrix of the numerical method. Hence, the resulting fast method is not lossy
and retains the stability and accuracy of the underlying bilinear collocation method while significantly reducing its compu-
tational cost and memory requirement.

The rest of the paper is organized as follows. In Section 2 we present a nonlocal diffusion model in two space dimen-
sions and a bilinear collocation method for the model problem. In Section 3 we develop a fast and faithful collocation
method with an efficient matrix assembly and storage, not by employing any lossy compression, but rather, by exploiting
a block-Toeplitz-Toeplitz-block structure of the stiffness matrix for any translation-invariant kernel function in the model.
In Section 4 we discuss possible extensions of the fast bilinear collocation method to other problems and the relation of
the collocation method with Galerkin finite element method. In Section 5 we conduct numerical experiments to investi-
gate the performance of the fast collocation method. In Section 6 we draw some concluding remarks and discuss future
directions.

2. A nonlocal diffusion model and its bilinear collocation approximation

We begin this section by considering a two-dimensional nonlocal diffusion model to be numerically solved in this paper.
Then we present its bilinear collocation approximation based upon which we develop a fast and faithful solution method.

2.1. A nonlocal diffusion model

A linear steady-state nonlocal diffusion model in the plane is given by the following integral equation with the prescribed
boundary condition [17,26,27]
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