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a b s t r a c t

This paper presents a stabilized finite element formulation of the hydrodynamic
Boltzmann transport equation (HBTE) to predict nearly incompressible fluid flow. The
HBTE is discretized with Hermite polynomials in the velocity variable, and a streamline
upwind Petrov–Galerkin formulation is used to discretize the spatial variable. A nonlinear
stabilization scheme is presented, from which a simple linear stabilization scheme is con-
structed. In contrast to the Navier–Stokes (NS) equations, the HBTE is a first order equation
and allows for conveniently enforcing Dirichlet conditions along immersed boundaries. A
simple and efficient formulation for enforcing Dirichlet boundary conditions is presented
and its accuracy is studied for immersed boundaries captured by the extended finite ele-
ment method (XFEM). Numerical experiments indicate that both the linear and non-linear
stabilization methods are sufficiently accurate and stable, but the linear formulation
reduces the computational cost significantly. The accuracy of enforcing boundary condi-
tions is satisfactory and shows second order convergence as the mesh is refined. Augment-
ing the boundary condition formulation with a penalty term increases the accuracy of
enforcing the boundary condition constraints, but may degrade the accuracy of the global
solution. Comparisons with results of a single relaxation time lattice Boltzmann method
show that the proposed finite element method features greater robustness and lesser
dependence of the computational costs on the level of mesh refinement.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Immersed boundary methods are attractive when the geometry is difficult to mesh, and for applications with dynamically
evolving geometry including multi-phase flows and topology optimization. Dirichlet boundary conditions in traditional
finite element methods are conveniently imposed by specifying nodal values. Prescribing the value of a state variable within
an element is more difficult because the state value is a function of several degrees of freedom. This situation occurs
frequently when complex geometries are represented with, for example, the extended finite element method (XFEM) or
iso-geometric finite element methods.

The flexibility of immersed boundary methods has attracted significant attention concerning the treatment of Dirichlet
conditions, see Stenberg [1] and Lew and Buscaglia [2] for an overview. Imposing Dirichlet boundary conditions along
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immersed boundaries for second order partial differential equations (PDEs) is not straight-forward. The function space of
Lagrange multiplier methods needs to satisfy the ‘‘inf–sup’’ condition to converge optimally [3], and stabilized Lagrange mul-
tiplier methods and Nitsche methods include parameters that can cause ill-conditioning of the linear system if not chosen
properly.

More recently, immersed boundary finite element methods have been applied to the Navier–Stokes (NS) equations. For
example, Gerstenberger and Wall [4] and Kreissl and Maute [5] studied a stabilized Lagrange multiplier-like method for the
NS equations by adding an auxiliary stress field that approximates the stress required to achieve the physical behavior at the
boundary. The root cause of the difficulty in imposing immersed boundary conditions for the NS equations is the second or-
der viscous term. Bypassing this issue is one motivation to describe nearly incompressible fluid flows by the hydrodynamic
Boltzmann transport equation (HBTE), which is a first order equation and allows convenient enforcement of Dirichlet bound-
ary conditions.

The HBTE is a kinetic theory approach to fluid dynamics, whereas the NS equations are derived from the conservation of
momentum in a continuum of fluid. The HBTE describes the time evolution of a particle distribution, f x; n; tð Þ, as a function of
the spatial and velocity variables. The form of the continuous HBTE under a Bhatnaggar Gross Krook relaxation time approx-
imation [6] is:

@f x; n; tð Þ
@t

þ n � rxf x; n; tð Þ ¼ � f x; n; tð Þ � f eq x; n; tð Þ
r

; ð1Þ

where x represents the spatial variable, n represents the velocity variable, t is the time, f eq x; n; tð Þ is the equilibrium distri-
bution, and r is the relaxation time. The right hand side of the continuous HBTE (1) is referred to as the collision operator. The
continuous HBTE has been shown to recover the NS equations [7], but includes the flexibility to represent finite Knudsen
number flows [8]. The focus of this paper is on continuum flows; finite Knudsen number flows will be the subject of future
research.

A growing portion of the computational fluid dynamics community has focused on the lattice Boltzmann method (LBM)
over the past two decades. A general overview of the LBM is provided by Yu et al. [9]. The LBM is an explicit finite difference
discretization of the hydrodynamic Boltzmann transport equation which leads to an algorithmically simple computational
procedure. While the LBM enjoys several numerical advantages, including few floating point operations per lattice update
and easy parallelization, there are several disadvantages to this popular method. By construction the LBM operates on struc-
tured meshes with explicit time integration. In contrast to finite element methods, the LBM lacks a mathematical formalism
for unstructured meshes, and local mesh refinement is more complex because the model parameters depend on the mesh
spacing, see for example [10]. The explicit time integration limits the time step size according to the Courant–Friedrichs–
Lewy (CFL) condition, which can be increasingly restrictive as the computational mesh is refined. The LBM inherently satis-
fies the CFL condition, but nonlinear instabilities may arise if the computational grid is too coarse for a given problem. The
mesh should be sufficiently refined to achieve stable values for the relaxation time and the lattice velocity. However, the
computational time required grows on the order of OðM4Þ in three dimensions, where M is the number of lattice cells that
span the characteristic length. Finally, accurate boundary condition enforcement schemes are difficult to develop, particu-
larly for curved boundaries [11].

The limitations of the traditional LBM have created interest in applying standard discretization techniques including
finite difference [12–15], finite volume [16–22], and finite element techniques. There has been an increase in research on
finite element methods for the HBTE in the last decade. Lee and Lin [23] presented a characteristic Galerkin finite element
method, and Li et al. [24,25] employed a least squares finite element method. Several other authors have investigated
discontinuous Galerkin schemes [26–30].

Generalized numerical methods have three major advantages over the LBM. First, implicit or explicit time integration
schemes with an arbitrary order of accuracy can be applied. Second, the numerical stability can be enhanced [25]. Third,
the velocity variable can be discretized with any suitable interpolation scheme and represented with arbitrary accuracy.
The most common two dimensional LBM uses nine discrete ordinates in the velocity space, which is for algorithmic simplic-
ity and is not a necessity to capture the physical behavior. Tölke et al. [15] followed the approach of Grad [7] and discretized
the velocity space with Hermite polynomials and included only six Hermite coefficients. Six Hermite polynomial coefficients
are the minimum number of degrees of freedom necessary to recover the NS equations for nearly incompressible flow (i.e.,
low Mach number flow) in two dimensions. This discretization of the velocity variable results in a unique relationship be-
tween the degrees of freedom and the macroscopic physical quantities [15] and simplifies the application of boundary con-
ditions. The boundary conditions appear as typical Dirichlet conditions or as linear constraints on the state variables, which
for the purpose of this paper will be referred to as Dirichlet conditions. The velocity variable can be resolved with more de-
grees of freedom to describe rarefied or high Mach number flow [26,31].

It is necessary in finite element methods to stabilize the advection term in the HBTE to prevent spurious spatial oscilla-
tions in the state variable field. The streamline upwind Petrov–Galerkin (SUPG) stabilized finite element method [32] has
been applied to a wide class of advection dominated problems [33–35]. A variation called the subgrid-scale finite element
method was applied to the radiative transport equation [36] with discrete ordinates in the velocity variable. To the authors’
knowledge, an SUPG stabilized formulation for the hydrodynamic Boltzmann transport equation is yet to be formulated for
either discrete ordinate or Hermite polynomial discretized velocity spaces. The difficulty is in developing the matrix of sta-
bilization parameters, commonly referred to as s. The collision term complicates the definition of s for any velocity space
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