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a b s t r a c t

The extended finite element method (XFEM) is an efficient way to include discontinuities,
such as a crack, into a finite element mesh. The singularity at the crack tip restricts stan-
dard finite element methods to converge with a rate of at most 1/2 for the stresses, and
1 for the displacements, with respect to the mesh size. This is true for cracks in incompress-
ible materials as well, when any of the standard techniques to sidestep locking is adopted.
To attain an optimal convergence rate of 1 for stresses and of 2 for displacements with
piecewise affine elements, it is necessary to enrich the finite element space with singular
basis functions. The support of these singular functions is the entire plane, but to avoid
decreasing the sparsity of the stiffness matrix too much, each of them is then generally
localized to a neighborhood of the crack tip by multiplying by a cutoff function or a subset
of a partition-of-unity basis. For nearly incompressible materials, however, the resulting
basis functions no longer contain incompressible displacement fields, and hence they
either lead to locking or suboptimal convergence rates. To overcome this problem, we
introduce here an XFEM with optimal convergence rate and without the problem of locking
for nearly incompressible materials, i.e., it possesses an error bound that does not diverge
as Poisson’s ratio approaches 0.5. The method is based on a primal, or one-field formulation
of a discontinuous Galerkin method that we introduced earlier. This one-field formulation
is obtained through the introduction of a lifting operator, but unlike most lifting operators
which map inter-element discontinuities into elementwise polynomials, ours maps such
discontinuities into spaces enriched with the singular behavior of the solution. This is
the key idea for the method to be simultaneously locking-free and optimally convergent.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The extended finite element method (XFEM) [1] is an efficient method for incorporating cracks and other types of dis-
continuities in a mesh without the need for re-meshing. However, most XFEMs designed for compressible materials suffer
from volumetric locking in the case of near incompressibility. This observation is not surprising. In fact, it is well known
that, when the elasticity tensor becomes more and more incompressible, i.e., when Poisson’s ratio m approaches 0.5, the
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piecewise P1 displacement space locks, and piecewise P2 and P3 elements as well as quadrilateral elements of any order
may also lose their optimal order of convergence [2]. Hence any XFEM developed by enriching such basis functions locks
as well.

In the context of crack problems, there are mainly two strategies to overcome the locking problem: (a) building a
displacement-based XFEM by enriching a locking-free polynomial basis, and (b) resorting to a mixed method. Of these
strategies, the second one applies to both near and perfect incompressibility. The stability of such methods is given by
the well-known inf-sup condition which restricts the choice of displacement–pressure combinations [3]. The best known
combinations include the Q2P1 (piecewise Q2 for the displacement and piecewise P1 for the pressure) and the Mini element
[4]. However, selecting stable displacement–pressure spaces for an XFEM is not as straightforward as for a standard finite
element method (FEM). A numerical study of such criterion for XFEMs was done by Legrain et al. [5], who explored a couple
of stable combinations of displacement–pressure spaces (the Mini element [4] and the T6T3), which provides some general
guidelines for choosing the basis functions. Nevertheless, combinations with provable stability is still absent to date to our
best knowledge, perhaps because the singular enrichment functions depend on the crack tip location, and as a result, the inf-
sup condition has to be analyzed for all possible topologies between the crack and the mesh. Also within the realm of mixed
methods are the methods of enhanced assumed strain and reduced integration, which were used by [6,7] to study cracked
nearly incompressible materials, respectively, both in the XFEM context.

Along the line of displacement-based methods, the discontinuous Galerkin (DG) method can be used as a foundation to
build locking-free polynomial basis. Among the many locking-free DG methods here we mention [8–11]. In particular, we
proved the locking-free property of [11] (with a minor modification) in [12].

In this paper, we build a locking-free and optimally convergent XFEM based on the locking-free DG method developed in
[11] and the optimally convergent XFEM developed in [13], whose stability and optimal convergence were proved in [14].
We will enrich the DG displacement space of [11] with the mode I and mode II crack tip asymptotic solutions over a small
region of the computational domain. Like in [13], we enrich a region that always contains a fixed ball centered at the crack
tip, a condition necessary for optimal convergence rates [15,16]. Moreover, we include the nonlocal asymptotic solutions di-
rectly in the basis without the use of partition of unity, in contrast to most XFEMs.

The main difference between the displacement approximations here and that in [13] is that the P1 basis functions in this
work are discontinuous between all element boundaries in order to overcome locking, whereas those in [13] are discontin-
uous only between the two sides of the crack and between the enriched and unenriched regions. In other words, the method
in [13] was not aimed for nearly incompressible materials, and will lock if used.

With the displacement approximations chosen, the proposed method is defined through the introduction of the DG-deriv-
ative, which plays the role of the classical derivative in the case of a continuous displacement space. The DG-derivative of a
displacement approximation is the sum of two parts: (a) the displacement derivative within an element, and (b) the lifting
operator that takes into account the inter-element discontinuities of the displacement.

The lifting operator that we will introduce later incorporates a few important considerations to ensure the simultaneous
achievement of the locking-free property and optimal convergence. Firstly, when restricted to each element, the space from
which we seek the lifting operator, called the lifting space, is that of the linear combination of (a) a polynomial tensor space,
and (b) the restriction of the strain of the displacement enrichments. We remark that most DG methods to date (see the uni-
fied treatment [17] and also our previous work [11,13]) normally choose the lifting space so that it contains only polynomial
functions. Secondly, in the definition of the lifting operator, we employ a similar but different space as the test space, which
involves the stress of the displacement enrichments. We will justify the apparent complexity of this definition of the lifting
operator for the consideration of absence of locking and of optimal convergence.

Compared with [14], the lifting operator in this work is not necessarily injective, a condition used by many other authors
[11,18] in proving the stability and optimal consistency error of the respective DG method. In fact, we will show that this
injectivity is not a necessary condition for stability or optimal consistency error; the lifting operator may not be injective
but the overall method is still stable and the consistency error is optimal. This conclusion can simplify the stability proof
in [14].

One important difference between the method introduced here and that in [13] is that in the method in this manuscript
we cannot guarantee that the stress intensity factors (SIFs) taken as coefficients of the enrichments converge to their exact
values at a rate proportional to the square root of the mesh size. The argument therein does not carry over to the method
here.

The remaining sections of this paper is organized as follows. We first state the problem of interest in Section 2, then in
Section 3 justify the apparent complexity of the proposed method by offering a bird’s-eye view of it. In Section 4 we present
the method itself in detail. Then in Section 5, we verify our method with numerical examples: one set of examples with a
straight crack and one set with a circular arc crack. After these, we devote Section 6 to the analysis of the method, offering
the essential ingredients of the proof of its optimal convergence and absence of locking. In particular, in Section 6.1 we prove
(a) that the method is stable and (b) that the order of consistency error is optimal, both without invoking the injectivity of the
lifting operator, a property that our proposed method may not possess. In Section 6.2 we provide a sketch of the proof for the
existence of an optimal and locking-free interpolant, in the special case of no cut elements (i.e., all subelements are full ele-
ments). Finally, in Appendix A we show the less ideal performance (either suboptimal convergence or larger errors) of two
(simpler) unsuccessful combinations of the lifting spaces, supporting the justification of Section 3.
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