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a b s t r a c t

The computer simulation of the electrical activity of the heart has experienced tremendous
advances in the last decade. However, the acceptance of computational methods in the
medical community will largely depend on their reliability, efficiency and robustness. In
this work, we present a gradient-flow reformulation of the cardiac electrophysiology equa-
tions, and propose a minimax variational principle for the time-discretized electrophysiol-
ogy problem. Based on results from variational analysis, we derive bounds on the time-step
size that guarantee the existence and uniqueness of the saddle point, and in turn of the
weak solution of the electrophysiology incremental problem. We also show conditions
under which the minimax problem is equivalent to an effective minimization principle,
which is amenable to a Rayleigh–Ritz finite-element analysis. The derived time-step
bounds guarantee the strict convexity of the objective function resulting from spatial dis-
cretization, thus ensuring the convergence of gradient-descent methods. The proposed the-
ory is applied to the widely employed FitzHugh–Nagumo model, which is shown to
conform to the variational framework proposed in this work. The applicability of the
method and its implications on the robustness of time integration are demonstrated by
way of numerical simulations of the electrical behavior in a single-cell and 3D wedge
and biventricular geometries. We envision that the proposed framework will open the door
to the development of robust and efficient electrophysiology models and simulations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Computational cardiology has experienced important advances in the last decade with the advent of supercomputing
platforms. The computer simulation of the propagation of electrical impulses in the cardiac muscle has received a great deal
of attention from the computational science community [33]. Currently, detailed anatomical computational models of the
electrophysiology of heart are being used to study the physiology and pathology of the heart [45]. The majority of these mod-
els are multiscale in spirit, and therefore prove very useful in understanding the behavior of cellular- and tissue-level mech-
anisms from the study of organ-level behavior [23]. The translation of such computational models into the clinic is currently
being advocated by many research groups around the world [20]. However, the acceptance of computational methods in the
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medical community will largely depend on their efficiency, robustness and reliability, which are currently open avenues of
research.

Cardiac electrophysiology concerns the study of the propagation and interaction of electrical waves in biological tissue.
The roots of the mathematical formulation of electrophysiological models date back to the efforts of Hodgkin and Huxley
[22] on modeling the electrical propagation in squid giant axons. Following the seminal work of Hodgkin and Huxley, a large
number of cardiac electrophysiology models of the Purkinjee fibers, myocardial tissue and pacemaker cells have been pro-
posed in the literature, see [14] for a comprehensive survey. Today, we distinguish two main classes of electrophysiological
models: biophysical and phenomenological models [38]. Biophysical models [34,3,30,44] aim at describing the complex ex-
changes occurring at the sarcolemma, or cell membrane, and organelles by quantifying the sub-cellular fluxes of Calcium,
Potassium, Sodium and Chlorides ions through the several different mechanisms available, i.e., ion channels, pumps,
exchangers and gap junctions. Phenomenological models [16,32,1,15] aim at modeling a larger spatial and temporal scale
than biophysical models, and they consider a reduced set of state variables and parameters that do not necessarily have a
direct physical meaning but make these models more tractable from a mathematical analysis and computational implemen-
tation viewpoint.

Regardless of their nature, virtually all deterministic cardiac electrophysiology models fall in the category of non-linear
reaction–diffusion equations [27]. The numerical solution of cardiac electrophysiology equations has been predominantly
carried out using finite-difference [42,8,36], finite-volume [21,26] and finite-element [40,48] approximations for the spatial
discretization, whereas the time integration has been predominantly addressed by finite-difference schemes. The most tra-
ditional time-integration schemes used in cardiac electrophysiology are explicit Euler methods, which have proven partic-
ularly suitable for large-scale simulations where solving a large linear system of equations is generally avoided. However, it
is well known that time-step bounds that arise from stability considerations for explicit methods become more stringent as
the mesh size decreases, thus reducing the efficiency of those methods as a finer spatial discretization is considered.
Moreover, the determination of stability conditions can become cumbersome or even intractable when dealing with highly
non-linear systems. In the search of more stable algorithms, semi-implicit and fully-implicit [29] schemes have also been
employed, allowing for larger time steps at the expense of solving a nonlinear set of equations at each time step. Depending
on the electrophysiology model, the resulting set of equations can be highly nonlinear, and even contain discontinuous func-
tions. As a consequence, the convergence of classical solution methods can hardly be guaranteed, thus hindering the robust-
ness of implicit methods.

The mathematical analysis of electrophysiology models has been mainly developed during the last decade, following the
popularization of the numerical simulation of cardiac electrical activity by the scientific computing community. The proof of
existence and uniqueness of solutions to the phenomenological FitzHugh–Nagumo bidomain model was developed by Colli
Franzone and Savaré [6] based on classical results from the general theory of evolution variational inequalities. Using the
same abstract variational framework, Sanfelici [41] has shown the convergence of Galerkin finite-element approximations
of the FitzHugh–Nagumo model. More recently, a multiscale analysis based on the C-convergence theory has shown the ade-
quacy of the bidomain model to represent the microscopic behavior of cardiac tissue [37]. Recent advances showing the exis-
tence and uniqueness of solutions to more complex biophysical models have been addressed in [47].

Although it was observed in [6] that the FitzHugh–Nagumo equations have a variational structure, this fundamental
property and its implications have not been exploited to date, neither by the biophysical nor the computational communi-
ties. In this work, we present a gradient-flow reformulation of the cardiac electrophysiology equations that allows one to
understand these models in a new light, namely, in terms of variational principles such as minimization of free energy, max-
imization of entropy, and phase transitions, which are pervasive in the thermodynamics, mechanics, electromagnetism, and
the biophysics literature. From a mathematical viewpoint, variational principles offer a wealth of analysis results regarding
existence of solutions using the tools of the modern calculus of variations [9]. From a numerical point of view, variational
principles are the underlying framework for some of the most celebrated numerical methods, like the finite element method
[7]. Variational formulations for gradient-flow systems have been applied to a wide variety of physics and engineering prob-
lems, particularly by the computational mechanics community in the formulation and numerical solution of multiscale
material models [35,24,25] and soft-tissue biomechanics [49,12].

The paper is organized as follows. Section 2 is concerned with the theoretical aspects of the variational principle for car-
diac electrophysiology introduced in this work. We start by stating, in a general form, the initial boundary value problem
that governs the electrical behavior of cardiac tissue. Generalized potentials are then introduced, and a gradient-flow refor-
mulation of the electrophysiology problem based on such potentials is presented. Using a Backward-Euler time-discretiza-
tion scheme, an incremental minimax variational formulation equivalent to the time-discretized governing equations is
introduced, and conditions on the time-step size are stated in order to guarantee existence and uniqueness of saddle points.
Exploiting the local nature of the evolution equations for the state variables, an effective minimization problem amenable to
non-linear finite-element methods is derived. The phenomenological FitzHugh–Nagumo model is then analyzed in view of
the proposed theory, and bounds on the time-step size that only depend on the parameters of the model are derived to en-
sure strict convexity of the effective minimization problem. The time-step bound, in turn, guarantees existence and unique-
ness of the weak solution. In Section 3, we employ the proposed method to numerically solve three examples of increasing
geometrical complexity. The convergence of the solution to the non-linear problem for each example is studied and analyzed
based on the time-step bounds derived for the FitzHugh–Nagumo model. Section 4 ends with a discussion on the obtained
results and future perspectives.
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