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Abstract

A new hyperelastic model for a crystal structure with face-centered cubic or diamond cubic system is proposed. The proposed
model can be simply embedded into a nonlinear finite element analysis framework and does not require information of the crystal
structure. The hyperelastic constitutive relation of the model is expressed as a polynomial-based strain energy density function. Nine
strain invariants of the crystal structure are directly used as polynomial bases of the model. The hyperelastic material constants,
which are the coefficients of the polynomials, are determined through a numerical simulation using the least square method. In
the simulation, the Cauchy–Born rule and interatomic potentials are utilized to calculate reference data under various deformation
conditions. As the fitting result, the hyperelastic material constants for silicon, germanium, and six transition metals (Ni, Pd, Pt,
Cu, Ag, and Au) are provided. Furthermore, numerical examples are performed using the proposed hyperelastic model.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

As global interest of nanoscale devices has greatly increased over the past decade, mechanical analysis that
considers the nanoscale effect becomes more important when it comes to designing the nano-electromechanical
system (NEMS). Because many nanoscale structures, such as nanowires and nanofilms, are likely to consist of a
single crystal material rather than a poly-crystal material, understanding the mechanical behavior of a single crystal
structure is essential when constructing the NEMS design. One remarkable feature of a single crystal structure is that
the elastic range of the structure is much wider than that of a macroscale structure, which consists of poly-crystals.
For an example, a nanowire can elastically stretch more than 5% under tensile loading [1,2], and the magnitude of the
equilibrium strain of a nanofilm ranges more than 2% when the thickness of the nanofilm is a few nano-meters [3,4].
Therefore, it is evident that the hyperelastic behavior of a single crystal material is very important when it comes to
designing the NEMS.
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One efficient method when considering the hyperelastic effect of a single-crystal structure is to use CBR, the
Cauchy–Born rule [5,6]. The CBR acts as the bridge between the atomistic deformation in a crystal lattice and
the macroscopic deformation of the continuum theory. Through the use of CBR, the position of each atom in the
deformed configuration can be determined by the macroscopic deformation gradient. If every atomic position of a
lattice in a deformed state is known, the tangent modulus of the deformed state can be obtained analytically from
the inter-atomic potential function. Many researchers have performed nonlinear finite element analysis when solving
nano-scaled structural problems through the use of CBR. Tadmor et al. [7] have used CBR to describe the hyperelastic
behavior of local regions in the quasicontinuum method. Utilizing an extension of CBR based on an exponential map,
Arroyo and Belytschko [8] proposed hyperelastic membrane models for a carbon nanotube. Park et al. [9] developed
a surface Cauchy–Born model to consider the surface effect on nanoscale materials.

However, to implement CBR in a nonlinear finite element analysis procedure as a hyperelastic model is not an
easy task. Since pair potentials such as Lennard-Jones [10] and Morse potential [11] functions were introduced,
many inter-atomic potentials for crystalline solid structure have been developed and used. However, the use of the
simple pair potentials in the CBR is practically limited in nonlinear finite element analysis because many crystal
structures generally require complex interatomic potentials rather than simple pair potentials: the embedded-atom
method (EAM) potential [12] fully describes metallic bonding of face-centered cubic (FCC) crystals in terms of
electron density; Tersoff potential [13] can be used for covalent bonding materials such as silicon, germanium, and
carbon; Reactive force field [14] is a bond order based force field that has been developed to consider chemical
reactions. Furthermore, in some crystal structures such as diamond and zincblende structures, not all atoms follow
transformation rules by the deformation gradient tensor. To describe every atomic position in the deformed state,
these structures require additional internal degrees of freedom, which are often called inner displacement or internal
displacement [15]: Tang et al. [16] proposed the quasi-continuum method for silicon nanostructures using internal
displacement; Park and Klein [17] presented a surface Cauchy–Born model for silicon nanostructures using internal
displacement as well. The internal displacement in both works was numerically calculated using an iterative method.
As the internal displacements require continuous calculation at each Gauss point for every element in each iteration
step, high computing cost is unavoidable. For these reasons, it is needed for crystal structures in finite element analysis
to employ a new hyperelastic continuum model which can be an alternative to the CBR.

Over the past several decades, many hyperelastic models have been made to consider large deformation for rubber-
like materials and biological soft tissues. For isotropic rubber-like materials, Treloar [18] introduced the simplest
hyperelastic form of the Neo-Hookean model, and Mooney [19] and Rivlin [20] presented a new hyperelastic model,
the Mooney–Rivlin model, using two invariants of the right Cauchy–Green tensor. Ogden [21] proposed a type of
hyperelastic model using principle stretches, which can include the previous two models as special cases. In addition
to these models, Yeoh model [22] and Arruda–Boyce model [23] were proposed for isotropic rubber-like materials.
For anisotropic hyperelastic materials, Spensor [24] constructed strain energy function using augmented transversely
isotropic invariants for fiber-reinforced composites. After his work, many studies were followed for biological soft
tissues and fiber-reinforced elastomers [25–30]. To our knowledge, while a lot of hyperelastic models for isotropic
and transverse isotropic material have been studied, but a practical hyperelastic model for crystal structures has been
rarely reported in the literature.

In this paper, a framework of anisotropic hyperelastic modeling for crystal structures is proposed, and a new
hyperelastic model for FCC and diamond cubic crystals is presented. The proposed hyperelastic model is much simpler
than the interatomic potentials and can be easily embedded into a nonlinear finite element analysis. A polynomial-
based strain energy density function is used to express the hyperelastic constitutive relation. The next section presents
the strain energy density function with nine strain invariants which act as the polynomial bases of the function. In
Sections 3 and 4, the material constants for FCC and diamond cubic crystals of the hyperelastic model are determined
through the use of the least square method, and numerical examples are presented in Section 5 to validate the proposed
model.

2. Hyperelastic model for crystal structures

2.1. Strain energy density function

For the hyperelastic isotropic incompressible materials, Treloar [18,31] and Rivlin [32] presented the Neo-Hookean
elasticity model to account for large elastic deformation. Mooney [19] and Rivlin [20] proposed a more general form
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