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Highlights

• Verification of a boundary layer numerical code by the Method of Manufactured Solutions.
• Convergence order analysis of a boundary layer numerical code.
• Validation of a boundary layer numerical code through comparison with experimental data.
• Agreement between boundary layer numerical code and Linear Stability Theory results.
• Use of high-order approximations.

Abstract

The verification of a Direct Numerical Simulation code is carried out using the Method of Manufactured Solutions. Numerical
results from the code are also compared with experimental and Linear Stability Theory results in a boundary layer over an airfoil.
Displacement thickness, momentum thickness and shape factor are used to measure the boundary layer. Comparisons considering
the amplitude of the velocity disturbance caused by two-dimensional Tollmien–Schlichting waves are also made. The results show
the verification and validation of the Direct Numerical Simulation code.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical studies involving fluid motion have large applications in science and engineering. As an example,
computational simulations can be used for climate predictions, aerodynamics and oil industry, biomedical engineering,
and many other areas. Due to the great importance of these numerical predictions for practical applications, the

∗ Corresponding author.
E-mail addresses: lariss@gmail.com (L.A. Petri), psartori26@gmail.com (P. Sartori), josuelkr@gmail.com (J.K. Rogenski),

lefraso@gmail.com (L.F. de Souza).

http://dx.doi.org/10.1016/j.cma.2015.04.001
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.04.001&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.04.001
http://www.elsevier.com/locate/cma
mailto:lariss@gmail.com
mailto:psartori26@gmail.com
mailto:josuelkr@gmail.com
mailto:lefraso@gmail.com
http://dx.doi.org/10.1016/j.cma.2015.04.001


L.A. Petri et al. / Comput. Methods Appl. Mech. Engrg. 291 (2015) 266–279 267

credibility of mathematical models and numerical methods is a factor that should be investigated. Verification and
validation is the field of study that provides different techniques to quantify how reliable a simulation code is [1–3].

Particularly, the simulation of boundary layer flows has been the focus of many researchers in Computational Fluid
Dynamics (CFD). The no-slip condition on a solid body reduces the velocities of the outer flow to zero on the surface.
This reduction generates large velocity gradients in a thin layer adjacent to the body surface. This thin region is the
boundary layer, in which strong viscous effects exist [4]. The boundary layer is directly affected by the outer flow [5,6].
For example, the presence of a favorable pressure gradient causes the outer flow to accelerate and stabilizes the
boundary layer flow. On the other hand, the presence of an adverse pressure gradient decelerates the outer flow and
increases the instability of the boundary layer. An increasing instability leads to transition to turbulence. Experimental
and numerical studies are being used to explain and predict this phenomenon [7–10].

In this paper, we adopt a Direct Numerical Simulation (DNS) code to predict laminar–turbulent transition problems
in incompressible boundary layer flows. The results carried out by this code are verified through the Method of
Manufactured Solutions (MMS). This is the most efficient method for verification of codes. The basic idea is producing
a solution and transforming the original set of governing equations into a set of similar equations where the exact
solution is available.

A comparison of the amplification rate of Tollmien–Schlichting waves in a boundary layer to Linear Stability
Theory (LST) and to experimental results were also used to verify and validate the code. Unsteady disturbances of
small amplitude produce Tollmien–Schlichting (TS) waves in the flow. The growth or decay of these waves evidences
the flow stability. According to LST, when the amplitudes of these waves are infinitesimal, they can grow until certain
point (neutral curve) and start to decay. Based on this, TS waves were generated in the flow in order to study their
effect in the velocity profile.

The governing equations adopted here are the incompressible Navier–Stokes equations written in vorticity–velocity
formulation. The numerical method is based on high-order finite-difference approximations for the discretization of
the streamwise and wall-normal spatial derivatives. In the spanwise direction a spectral method that uses Fast Fourier
Transformation is applied. The time integration is carried out by a fourth-order Runge–Kutta scheme.

2. Formulation

In this section the governing equations, the reference system, and the integration domain are presented.

2.1. Governing equations

The governing equations are the dimensionless Navier–Stokes equations for incompressible flow with constant
viscosity written in orthogonal coordinates. The non-dimensionalization is made considering the Reynolds number
Re, given by:

Re =
Ũ∞ L̃

ν̃
,

where Ũ∞ is the reference velocity, L̃ is the reference length and ν̃ is the kinematic viscosity. The reference velocity
is the free stream velocity and the reference length is the distance from the leading edge, the foremost edge of a rigid
body (e.g. airfoil and flat plate).

The dimensionless variables are written as:

x =
x̃

L̃
; y =

ỹ

L̃
; z =

z̃

L̃
; u =

ũ

Ũ∞

; v =
ṽ

Ũ∞

; w =
w̃

Ũ∞

;

ωx =
w̃x L̃

Ũ∞

; ωy =
w̃y L̃

Ũ∞

; ωz =
w̃z L̃

Ũ∞

; t =
t̃Ũ∞

L̃
,

where the tilde denotes dimensional variables; x , y and z are the spatial coordinates in streamwise, wall-normal and
spanwise directions, respectively; u, v, w and ωx , ωy , ωz are the velocity and vorticity components in each direction,
respectively; and t is the time.
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