Accepted Manuscript

Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods

Jingde Li, Hong Hao

PII: S0950-4230(17)30293-0

DOI: 10.1016/j.jlp.2017.08.002

Reference: JLPP 3566

To appear in: Journal of Loss Prevention in the Process Industries


Received Date: 25 March 2017

Revised Date: 4 July 2017

Accepted Date: 2 August 2017

Please cite this article as: Li, J., Hao, H., Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods, *Journal of Loss Prevention in the Process Industries* (2017), doi: 10.1016/j.jlp.2017.08.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

L	Internal and	external	pressure	prediction	of vented	gas exi	olosion in	large	rooms

2	by using analytical and CFD methods
---	-------------------------------------

Jingde Li^{1, a}, Hong Hao^{1, b}

¹Center for Infrastructure monitoring and protection, school of Civil and Mechanical

Engineering, Curtin University, Kent St, Bentley WA 6102, Australia

^ajingde.li@curtin.edu.au, ^bhong.hao@curtin.edu.au

Abstract

This paper presents an analytical and a numerical method to predict the internal and external pressures from vented gas explosion in a large enclosure. The first peak internal pressure near the venting of enclosure, which is the primary factor related to the external pressure in far field, is predicted by using analytical correlations. The accuracy of the analytical method is verified by using data from a series of experiments with idealized conditions. However, the incapability of external pressure prediction and over-prediction of peak internal pressure are seen in the realistic scenario by using the analytical approach. Therefore computational Fluid Dynamics (CFD) simulations are consequently performed to accurately estimate both the internal and external pressures of vented explosions. A CFD modelling procedure is suggested in this paper to model the turbulent flame inside the enclosure by using FLACS and to calculate the blast wave propagation with low turbulence in free air by using ANSYS Fluent. This combined CFD modelling approach is proven yielding good predictions of internal and external pressures from vented explosions.

- **Keywords:** external gas explosion; internal pressure; far-field pressure; vented gas explosion;
- 23 CFD; FLACS; ANSYS Fluent

Download English Version:

https://daneshyari.com/en/article/4980337

Download Persian Version:

https://daneshyari.com/article/4980337

Daneshyari.com