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a b s t r a c t

Although concurrent multiscale methods have been well developed for zero-temperature
simulations, improvements are needed to meet challenges pertaining to finite-temperature
simulations. Bridging domain method (BDM) is one of the most efficient and widely-used
multiscale atomistic–continuum techniques. It is recently revealed that the BDM coupling
algorithm has a cooling effect on the atoms in the bridging domain (BD), and application of
thermostats to rectify the cooling effect in the original BDM formulation is unstable. We
propose improvement of the BDM formulation for finite-temperature simulations by
employing a three-layer mesh structure in the BD, consisting of coarse, meso, and atomic
meshes. The proposed method uses a mesh-independent physics-based discrimination
between thermal and mechanical waves to define and introduce a meso mesh that is inde-
pendent of the finite-element (FE) mesh. Temperature stability in the BD is achieved by
constraining only the mechanical part of atomic motion to the FE displacements while
unconstrained thermal vibrations are thermostatted using local thermostats in the BD.
The new architecture of three-layer-mesh BD effectively mitigates the temperature cooling
effect encountered by the conventional BDM as well as suppresses the spurious mechanical
wave reflection. Numerical simulations have shown the robustness and accuracy of the
proposed multiscale method at finite temperature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, computation has firmly established itself as a new approach in parallel to experiment and the-
ory in understanding fundamental materials properties. Using supercomputers, which are accessible widely to academic
community today, it is possible to carry out first-principles simulations of hundreds of atoms for tens of picoseconds and
molecular dynamics (MD) simulations with interatomic potentials of millions of atoms for microseconds. However, these
accessible length and time scales are still far short of the length scale and especially the time scale of real experiments. Some
properties, for which convergence is very fast, e.g. those of point defects in periodic crystals, can be accurately calculated
using first-principles techniques. However, the so-called strongly coupled multiscale systems have the properties whose
convergence is very slow. These systems are typically associated with a long-range interaction, either electrostatic or elastic.
As such, a process, which takes place in a small region, can be affected by the collective behavior of a very large number of
atoms over long, sometimes even macroscopic distances. Also, in some cases, the detailed interactions of certain key atoms
can influence the equilibrium configuration of potentially tens of thousands of atoms. Concurrent multiscale methods have
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been developed to circumvent the temporal and spatial limitations of all-atom simulations for modeling strongly coupled
multiscale systems, in which the critical zones are limited to small parts of the problem domain while continuum description
elsewhere. The fact that it is often unnecessary to use all-atom simulations to treat the whole problem domain is another
motivation toward multiscale modeling. Processes involving bond formation, bond breaking, charge transfer, and nonlinear
response are best handled with quantum/molecular mechanics while large and arbitrary geometries with wide-ranging
boundary conditions can be readily handled with continuum mechanics [1].

The key to multiscale methods is to have an accurate and efficient algorithm that bridges seamlessly different scales.
While sequential multiscale methods have enjoyed long-time success [2]; concurrent multiscale methods have been more
challenging, as they need to adress a number of issues associated with energy transmission and changes in the constitutive
description of a material across the interface between different models, such as spurious wave reflection. Different concur-
rent multiscale methods have been developed so far, including the quasicontinuum method (QM) [3,4], coarse-grained MD
method (CGMD) [5,6], macroscopic–atomistic–ab initio dynamics (MAAD) method [7,8], bridging scale method (BSM) [9,10],
bridging domain method (BDM) [11,12], and concurrent atomistic to continuum (AtC) coupling method [13]. In the QM, the
entire model is viewed as an atomistic model while representative atoms and the Cauchy–Born rule are used to compute
strain energy without using fully atomistic resolution everywhere. To eliminate the unnecessary atomistic degrees of free-
dom, representative atoms are selected to define finite elements for which the mechanical variables are calculated using fi-
nite-element (FE) interpolation and the Cauchy–Born rule. Accurate computation of the energy requires that the atoms be
coincident with the finite element nodes in the critical fully-atomistic subdomain. Similarly, in the multiscale CGMD meth-
od, critical regions of the system are modeled with MD, while elsewhere is coarse grained for efficiency. The CGMD equations
of motion smoothly match those of MD as the mesh size is reduced to the atomic scale since they are derived directly from
finite-temperature MD through a statistical coarse graining procedure. In this method, the cross-over to atomistic domain for
atomic-sized cells is completely smooth and no handshaking region between MD and CGMD regions is required. The MAAD
couples a tight-binding (TB) quantum mechanics approximation with MD and in turn with a FE continuum model. In this
method, atomistic and continuum models are coupled in a handshaking domain in which the two Hamiltonians are aver-
aged. To reduce spurious reflections into the MD zone and to thermalize high-frequency phonons propagating through re-
gions where the mesh spacing changes, the FE degrees of freedom are weakly coupled to a Brownian heat bath i.e. the
random and dissipative terms are added to their equations of motion. The BSM couples MD and FE models without the need
to mesh down the continuum model to the atomic scale by decomposing the displacement field into coarse and fine scales. It
also eliminates the unwanted MD degrees of freedom by accounting for them in the form of an impedance force augmenting
the standard MD equations of motion, so that high frequency waves which cannot be resolved by the FE model are dissipated
naturally out of the MD region.

The concurrent multiscale methods have been mostly applied to study mechanics problems such as crack nucleation/
propagation and crystal plasticity. One of the most popular multiscale methods is the BDM [11,12], which has been used
in a number of interesting mechanics simulations [14–20]. The BDM is an overlapping domain decomposition scheme in
which displacement/velocity compatibility between the atomistic and continuum domains is imposed using the Lagrange
multipliers technique. In this regard, the BDM is similar to the earlier Arlequin method [21–24], which couples continuum
models. In the BDM, similar to the BSM, the continuum model is not meshed down to the atomic scale since the positions of
atoms and nodes are not necessarily identical in the BD. A uniform continuum mesh can be used, which does not correspond
with atomic positions. To increase the efficiency, large finite elements can be used within the smoothly discretized meshes,
without encountering the issues associated with rapid element-size changes. The BDM uses a so-called BD to couple MD and
finite element (FE) models. Consequently, the quantities associated with the atoms and FE nodes need to be transferred be-
tween different models only in the BD. In this regard, the BDM is advantageous over the BSM, in which the FE mesh spans
over the whole MD zone. Recently, an absorbing boundary condition [25] has been developed that enables application of the
BDM with smaller bridging zones to further increase its efficiency. The BDM uses an effective but inexpensive algorithm [26]
to remove spurious wave reflections whereas some other techniques [27–30,9] use computationally expensive time history
kernels to obtain reflectionless boundary conditions. Furthermore, the BDM generally employs a linear scaling of the ener-
gies in the BD, in which the atomistic (continuum) energy is dominant near the purely atomistic (continuum) domain. This
strategy provides a gradual transition from the molecular model to the continuum model, and alleviates the error that arises
from dropping the atomistic energies from far-field atoms. Also, the BDM can be applied to nonlinear problems since it is not
based on linearization.

In the BDM, the system is partitioned into three sub-domains (Fig. 1): atomistic, continuum, and BD. Displacement/veloc-
ity compatibility between atomistic and continuum scales in the BD is imposed using the Lagrange multipliers technique.
The compatibility can be imposed stringently by associating one Lagrange multiplier with each degree of freedom of each
atom in the BD, or it can be applied weakly by approximating the Lagrange multipliers from the finite element mesh i.e.
one Lagrange multiplier is associated with each degree of freedom of each FE-node in the BD [12,17]. Application of L2

and H1 couplings in the BDM formulation has been investigated in [31,32]. It is found that L2 coupling with a piecewise linear
weight function, such as that used in this paper, is stable. One important step in the BDM is to diagonalize the Lagrange-mul-
tipliers constraint matrix using the row-sum technique, which is essential in eliminating spurious wave reflections at the
interface of the atomistic and continuum domains [26]. The diagonalization step has also a positive side effect of reducing
computational cost. According to use of the Lagrange multipliers in the BDM formulation, total Hamiltonian is divided into
three parts: atomistic Hamiltonian, continuum Hamiltonian, and the Hamiltonian associated with the Lagrange multipliers.
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