Journal of Safety Research xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Journal of Safety Research

journal homepage: www.elsevier.com/locate/jsr

The construction FACE database — Codifying the NIOSH FACE reports☆

Xiuwen Sue Dong, a,* Julie A. Largay, Xuanwen Wang, Chris Trahan Cain, Nancy Romano b

- ^a CPWR The Center for Construction Research and Training, 8484 Georgia Ave, Suite 1000, Silver Spring, MD 20910, USA
- b National Institute for Occupational Safety and Health, Division of Safety Research, 1095 Willowdale Rd, Room 1714, Morgantown, WV 26505, USA

11

18

27

28

30

31

34 35

38

39

40

41

42

43

44

45 46

47

48

49

50 51

52

53 54

55

56

ARTICLE INFO

Article history:

Received 9 November 2016

Received in revised form 24 March 2017 10

Accepted 21 June 2017

Available online xxxx

Keywords:

Construction industry

Fatality assessment and control evaluation

Injury prevention and intervention

Occupational fatality

32 Workplace safety

ABSTRACT

Introduction: The National Institute for Occupational Safety and Health (NIOSH) has collected detailed informa- Q10 tion on select work-related fatalities through the Fatality Assessment and Control Evaluation (FACE) program 18 since 1982. Method: Reports generated from the in-depth research-oriented FACE investigations contain rich information such as safety training, use of personal protective equipment (PPE), and others, which is crucial for in- 20 jury prevention, but may not be available in other data sources. To facilitate usage of information included in 21 FACE reports, the Construction FACE Database (CFD) was created by extracting data from the original text reports 22 to allow for quantitative analyses of fatalities in the construction industry. This study describes the development 23 of CFD and its major contents. The study also illustrates how to employ the CFD, and discusses database consid- 24erations and potential future uses for construction safety and health research.

© 2017 National Safety Council and Elsevier Ltd. All rights reserved. 26

1. Introduction

The construction industry has the highest number of work-related fatal injuries in the United States. In 2015, 985 construction workers died at worksites, accounting for 20.4% of the overall work-related fatal injuries in the country (U.S. Bureau of Labor Statistics [BLS], 2016). These numbers are disproportionally high given that construction workers made up less than 7% of the overall total employment in 2015 (CPWR, in press). Accurate surveillance and examination of contributing factors are necessary for effective injury prevention (Bunn, Costich, & Slavova, 2006). However, few data sources contain information on detailed circumstances and situations leading up to and surrounding fatal injuries (Higgins, Casini, Bost, Johnson, & Rautiainen, 2001). Although the Census of Fatal Occupational Injuries (CFOI) provides a substantial amount of information on occupational fatalities, it does not collect information on safety training, use of personal protective equipment (PPE), whether a malfunction or unsafe design of machinery or tools were involved in an incident, and how to avoid similar incidents in the future.

To provide insight into work-related fatal injuries, the National Institute for Occupational Safety and Health (NIOSH) started the NIOSH

E-mail address: sdong@cpwr.com (X.S. Dong).

Fatality Assessment and Control Evaluation (FACE) program in 1982, 57 and added the State FACE program in 1989 (http://www.cdc.gov/ 58 niosh/face/brochure.html). These programs target varying types of 59 events for investigation over the years. For example, NIOSH is currently 60 focusing FACE resources on investigating falls in construction, machin- 61 ery, and foreign-born workers, particularly among states that do not 62 have funding for the State FACE program. In addition to investigating 63 NIOSH targets, individual states conduct a limited number of investiga- 64 tions of fatalities related to state-level targets. The FACE reports are 65 the result of these extensive fatal injury investigations, combining infor- 66 mation collected from the employer, coworkers, safety personnel, 67 emergency response crews, and other witnesses. In addition to the 68 decedents' demographic and employment information, FACE collects 69 information on the decedents' employers, such as whether the 70 employer had a safety program, provided safety training, PPE, and 71 much more. Such information is crucial for understanding the mecha-72 nisms by which fatalities occur (Bunn, Slavova, & Hall, 2008). FACE re-73 ports also provide detailed recommendations on how to avoid such 74 incidents based on information obtained during the investigations 75 (Higgins et al., 2001). These recommendations and detailed incident de-76 scriptions can be critical for injury preventions and interventions, in-77 cluding safety policies and procedures, engineering controls, and other 78 aspects of the safety climate (Menendez, Castillo, Rosenman, Harrison, 79 & Hendricks, 2012).

Since the FACE program was established, a number of case studies 81 have been generated from the FACE reports to highlight specific risks 82 or policy implications (Hallman, Gelberg, & Hallisey, 2005; Morbidity 83 and Mortality Weekly Report (MMWR), 2001, 2004, 2012; NIOSH, 84 1990, 2006, 2007, 2010, 2011a, 2014). For example, a FACE report 85

http://dx.doi.org/10.1016/j.jsr.2017.06.017

0022-4375/© 2017 National Safety Council and Elsevier Ltd. All rights reserved.

[☆] Disclaimers: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health, In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. All web addresses referenced in this document were accessible as of the publication date.

Corresponding author.

86 87

88 89

90

91

92 93

94

95

96

97

98

99

100

101

102

103

104

105

106

107 108

109

110

111

112 113

114

115

116

117

118

119

120 121

122

123

124 125

126

127

about a fall from a "catch" platform in New Jersey led to an Occupational Safety and Health Administration (OSHA) *Letter of Interpretation*, stating that "catch" platforms must comply with OSHA's Scaffold Standard (OSHA, 2009). Findings based on FACE reports also contributed to a Massachusetts law protecting the safety and health of floor finishing workers (NIOSH, 2011b). Several reports covered various aspects of the Minnesota agriculture industry as well (Brown, Parker, Seeland, Boyle, & Wahl, 1997; MMWR, 1993, 1996, 1998, 1999). In addition, a few studies have applied FACE findings more broadly. These topics include tractors (Bunn et al., 2008), motor vehicle collisions (Bunn & Struttmann, 2003), electrocutions in construction (Zhao, Thabet, McCoy, & Kleiner, 2014), tree care operations (MMWR, 2009), younger workers (Higgins, Tierney, & Hanrahan, 2002), and homicides (Harrison & Gillen, 1996).

FACE reports are categorized by major industry on the NIOSH website. Since 1982, the NIOSH and State FACE programs have investigated hundreds of work-related fatal injuries in the construction industry, providing detailed information on the circumstances and recommendations to protect construction workers from similar incidents occurring again. In order to efficiently explore specific information in the FACE reports for the construction industry, the Construction FACE Database (CFD) was developed using all NIOSH and State FACE reports in construction posted to the NIOSH FACE website as of June 30, 2015. Since FACE programs are ongoing and the annual counts are subject to change, reports posted on the NIOSH FACE website after the cutoff date are not covered by the CFD. To assist safety and health professionals to use the CFD, this study describes the development and major contents of the CFD, and provides examples of how to employ the CFD for construction safety and health research. Considerations of the CFD and future research applications are also discussed.

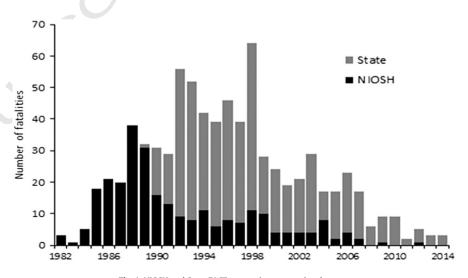
2. Materials and methods

Selected data from each construction-related FACE report were manually entered into the CFD, including information on decedents, their employers, type of injury, environment, and recommendations (Appendix A). Information on safety equipment, safety programs, and training was also included. The selected data items were coded using coding systems available in 2000 when the CFD was first created. Occupation and industry were coded using the 1990 Census Occupational Classification System (U.S. Department of Commerce, 1999) and the 1987 Standard Industrial Classification System (Office of Management and Budget (OMB), 1987), respectively. The fatal incident details were classified according to the BLS' Occupational Injury and Illness

Classification System (BLS, 2007). While these classification systems 128 have been updated in recent years, changes related to the construction 129 industry have been relatively minor. In order to maintain consistency 130 and ease usage of the CFD, the coding systems have remained the 131 same since inception.

A key element of the CFD is the compilation of FACE recommendations. Since a corresponding classification system is not available, 134 codes were created to categorize the narrative recommendations included in FACE reports (Appendix B). A two-digit classification schemation was developed to capture major categories as well as finer details for each recommendation. The first digit designates the main categories: 138 Personal Protective Equipment (PPE; coded $1\times$), Equipment $(2\times)$, 139 Training $(3\times)$, Organizational $(4\times)$, and Violations $(5\times)$. The second digit classifies more specific recommendations within each of the major categories (e.g., 14 – Provide functional Personal Fall Arrest 142 System (PFAS); or 42 – Conduct Job Safety/Hazard Analysis). Detailed 143 recommendation codes are displayed in Appendix B.

The CFD was created in Microsoft Excel, and can be easily imported 145 to other statistical packages, such as SAS. Examples of analyzing the 146 CFD using SAS (version 9.4) and descriptive statistics from the analyses 147 are reported below.


3. Results 149

3.1. Trend analysis

The CFD includes 768 construction-related fatal injuries reported by FACE, covering the fatalities that occurred from 1982 through 2014 (Fig. 1). While some investigations involved multiple fatalities, for analysis purposes, the CFD uses an individual death as the unit. According to the CFD, about one-third (270) of the fatalities were reported by the NIOSH internal FACE program and the remainder (498) by the State FACE programs. The NIOSH FACE program peaked in 1988 with 38 157 fatalities. The highest number (53) reported by State FACE programs was in 1998; making that year the highest reported total (64) for all 159 FACE programs.

State FACE programs were reduced shortly after 1998, leading to 161 fewer active State FACE programs. Since then, the number of annual 162 FACE reports has decreased. In June 2015, nine states were conducting 163 FACE programs — California, Iowa, Kentucky, Massachusetts, Michigan, 164 New Jersey, New York, Oregon, and Washington, and 13 other states 165 previously participated in the FACE program (Fig. 2).

FACE data collection has improved significantly in many respects 167 over the years. For example, while age was only collected in 44% of 168

Fig. 1. NIOSH and State FACE reports in construction, by year. (Source: NIOSH and State FACE Reports for Construction.)

Download English Version:

https://daneshyari.com/en/article/4980543

Download Persian Version:

https://daneshyari.com/article/4980543

<u>Daneshyari.com</u>