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a b s t r a c t

The advent of isogeometric analysis (IGA) using the same basis functions for design and analysis consti-
tutes a milestone in the unification of geometric modeling and numerical simulation. However, an impor-
tant class of geometric models based on the CSG (Constructive Solid Geometry) concept such as trimmed
NURBS surfaces do not fully support the isogeometric paradigm, since basis functions do not explicitly
represent the boundary. The finite cell method (FCM) is a high-order fictitious domain method, which
offers simple meshing of potentially complex domains into a structured grid of cuboid cells, while still
achieving exponential rates of convergence for smooth problems. In the present paper, we first discuss
the possibility to directly couple the finite cell method to CSG, without any necessity for meshing the
three-dimensional domain, and then explore a combination of the best of the two approaches IGA and
FCM, closely following ideas of the recently introduced shell FCM. The resulting finite cell extension to iso-
geometric analysis achieves a truly straightforward transfer of a trimmed NURBS surface into an analysis
suitable NURBS basis, while benefiting from the favorable properties of the high-order and high-continu-
ity basis functions. Accuracy and efficiency of the new approach are demonstrated by a numerical bench-
mark, and its versatility is outlined by the analysis of different trimmed design variants of a brake disk.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the question of merging geometric modeling
with numerical simulation has gained tremendous interest in the
scientific as well as in the application oriented community. For
industrial applications the relevance is obvious, as more than
80% (see [1]) of the overall cost of engineering design is typically
devoted to the transfer of a geometry oriented design model to a
finite element based computational model, whereas only a very
small percentage is spent on the numerical computation itself.
Both the design oriented as well as the computational oriented
community have accordingly expressed a strong desire for tools
which enable a smooth transition from one realm to the other. In
the scientific world the importance of integrating modeling and
computation has likewise been the subject of discussion for dec-
ades, although it has essentially had just a limited influence on
engineering practice. It was the recent advent of the isogeometric
analysis (IGA) that initiated a new wave of research and, within
just a few years, introduced a vast variety of results, opening a
new view on future concepts for design and simulation. The basic
idea is as easy as it is convincing: Instead of using classical finite
element basis functions living on a triangulated geometry, which
is only a (more or less accurate) approximation of the geometric

design model and therefore, needs be derived from the original
model, IGA uses exactly the same shape functions for both compu-
tation and geometry description. Not only is the exact geometric
representation a huge advantage, but the typically applied type
of functions makes IGA superior to classical FEM in many aspects.
Usually, B-splines or NURBS (see, e.g. [2–4]) are used, which are
typically higher order approximates and allow for mesh refine-
ment on the identical geometry as well as an increase in the degree
of the underlying polynomial functions. Therefore, many of the
desirable properties of the p-version of the finite element method
(cf. [5–7]), such as robustness and excellent approximation proper-
ties, are inherited.

By nature, IGA is closely related to Boundary Representation
(B-Rep) models, where a body is described by the shape of its sur-
faces and edge curves and where the topology consists of points,
edges, loops, faces and lumps. See e.g. [8,9] for a detailed definition
of the geometry and topology of B-Rep models which are widely
used in current CAD systems. Whereas spline surfaces and curves
generally provide a very powerful tool for describing a geometric
shape, problems arise in the IGA, when e.g. trimmed patches are
used to represent a body. A trimmed spline patch is a part of a
spline surface or body, which is bounded by lower dimensional
entities, i.e. in the case of a trimmed surface by one or more loops
consisting themselves of curves on the surface. Several approaches
to extend the IGA to trimmed surfaces have been suggested over
the past years [10]. These range from a suitable re-parametrization
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(see [4]) to the generalization of NURBS-based IGA to T-spline
based analysis [11], which also allows for a local refinement of
the ‘grid’. T-splines thus promise to restore one of the major advan-
tages of classical finite elements, i.e. the possibility to use non-uni-
form meshes.

Looking at current CAD-systems on the whole, B-Rep models
are by no means the only form of representation used for geome-
try. Constructive Solid Geometry (CSG) models (cf. [12]) are in
many cases much more suitable for the design process than B-
Rep models, as they make it possible to build up a structure in
an intuitive and efficient way out of simpler sub-structures and
generic geometric operations. Often used in conjunction with B-
Rep descriptions, CSG-models are also one important basis for
parametric [13] or feature based [14] design, where geometric enti-
ties are placed into relations and under constraints, and where a
body is only defined implicitly by storing its entire construction
process. There is virtually never just one single process for assem-
bling a complex body, but the many different ways of construction
lead to various models, some of which are better suited to isogeo-
metric analysis than others. A designer may construct one and the
same structure in a way which immediately fits IGA, or he may use
a definition which is far removed from a straightforward transfer
to analysis. Therefore, the simulation community often calls for
an analysis aware design (cf. [15]) to facilitate the transition be-
tween the two worlds. In many cases it is not possible to fulfill this
request as a typical designer is not ‘aware’ of the numerical simu-
lation’s needs and very often the design process itself only calls for
CSG operations at a later stage of design, which - despite their fun-
damental simplicity - change the topology of a structure and
accordingly the layout for suitable NURBS patches completely.
‘Drilling a hole’ in a structure would be one example for such an
operation, where needs for an efficient design process and a suit-
able IGA-model are far apart. Whilst IGA is ideal for representing
the boundary of a body by its ‘mesh’ it creates substantial prob-
lems for a straightforward transition from CSG models.

A new advancement in IGA technology has recently been intro-
duced ([11,16]) where T-Splines are used to describe the geometry
and solution fields, rather than of NURBS. They display a much lar-
ger flexibility from the point of view of local refinement, indepen-
dence of the design process and (late) topological changes to a
structure and therefore, overcome many of the aforementioned
problems of NURBS-based IGA. Like the original IGA approach, they
are still closely related to geometric boundary representation mod-
els rather than to Constructive Solid Geometry.

Exactly the opposite is true for Embedded or Fictitious Domain
Methods (cf. [17–22]), which completely set aside the representa-
tion of the domain’s boundary in a computational mesh and there-
fore, incur considerable effort to regain control over the precise
shape of a structure. Yet these approaches can be closely linked
to CSG-models, as will be shown in this paper. These approaches,
also known as Immersed Boundary Methods [23,24], embed the do-
main of computation X into an extended domain Xe, typically with
a geometrically simple shape, which can easily be discretized in a
structured mesh or even a Cartesian grid for computation. This
mesh or grid does not necessarily follow the boundary of the origi-
nal domain X. An overview of pertinent literature is given, for
example, in [25–28]. The recently proposed finite cell method
(FCM) [29,30] uses basic concepts of fictitious domain approaches
and extends them to high order Ansatz spaces familiar from the p-
version of the finite element method. One core feature of this
method is its capability to maintain high-order convergence rates
and high accuracy although the geometry is only represented
implicitly. Despite this astonishing feature, embedded domain ap-
proaches for high order finite element methods are still rarely
found in literature. A recent overview of embedded domain meth-
ods in general is given e.g. in [31], including some references to

higher-order approaches and focusing on methods which recover
the original domain at integration level. A multi-level set technique
to generate signed distance functions is advocated, which is then
used to recover the original domain on the integration level. An-
other approach utilizes the Kantorovich method [32] in the finite
element context. This method is implemented by scan&solve
[33,34] and appears similar to the finite cell method at first glance.
However, the basic idea here is to recover the solution in the origi-
nal domain by multiplying the high-order shape functions with a
function measuring the distance to the boundary of the structure.
High-order embedded domain methods have also been reported
in the context of the spectral element method [35], the extended
finite element method [36] and interface problems [20].

The FCM has been investigated for linear elasticity in 2D and 3D
[30,29,37], for topology optimization problems [38,39] and geo-
metrically nonlinear problems [40–42]. A very fast implementation
using pre-integrated stiffness matrices has been employed for
interactive 3D-simulation in a computational steering system
[43,44]. The finite cell method proves to have significant advanta-
ges over classical finite element methods or low order fictitious do-
main approaches in all these cases. Furthermore, adaptive schemes
with hierarchical spline base functions have been developed [45],
which feature certain connections to the isogeometric analysis. In
[46] an extension of the FCM to shell-like solid structures using
mapping concepts similar to the IGA has been proposed.

The particular advantages and disadvantages of IGA and FCM,
i.e. their close relationship to BREP and CSG models respectively,
call for an attempt to combine the best of both approaches. The
goal of this paper is to show how the finite cell approach can sup-
port trimmed patch isogeometric analysis while simultaneously
lending FCM high efficiency in the use of NURBS-based shape func-
tions and a geometry description as suggested by the IGA. This pa-
per is organized as follows: In the next Section 2 we give a short
summary of the basic ideas of the FCM and IGA. Section 3 will con-
nect FCM to Constructive Solid Geometry. Section 4 extends the
approach to three-dimensional thin-walled structures using iso-
geometric analysis. In Section 5 we will demonstrate the high
accuracy and efficiency of the method on a modification of a clas-
sical shell benchmark problem. We finally present a more complex
example to reveal the relevance and potential for practical
applications.

2. Basics of IGA and FCM

To provide a key to the notations employed, we will give a very
short summary of the basic concept of IGA and the finite cell meth-
od for three-dimensional linear elasticity. For further details we re-
fer to the cited literature on these topics.

2.1. Isogeometric analysis

The key idea of isogeometric analysis is to use the same basis
functions for the representation of geometry in CAD and the
approximation of solutions fields in the finite element analysis
[47,1]. Due to their relative simplicity and ubiquity in today’s
CAD tools, isogeometric analysis is usually based on B-splines
and non-uniform rational B-splines (NURBS).

A univariate B-spline basis of polynomial degree p consists of n
basis functions Ni;pðnÞ, where i ¼ 1; . . . ;n. It is generated from a
knot vector N, which is a non-decreasing sequence of coordinates
in the parameter space n [4,48]

N ¼ fn1; n2; . . . ; nnþpþ1g; n1 6 n2 6 . . . 6 nnþpþ1 ð1Þ

Piecewise polynomial B-spline basis functions are defined over p + 1
knot spans, which join smoothly up to a continuous differentiability
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