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ment. The goal-oriented error estimator is computed with a p-refined discrete dual space,
which is adaptively refined alongside the primal space. This discrete dual space is proven to
be a strict superset of the primal space. Hierarchical refinements are introduced in marked
regions that are formed as the union of chosen coarse-level spline supports from the primal
basis. We present two ways of extracting localized refinement indicators suitable for the
Coal-oriented error estimation hier_archical rgﬁngment procgdure: one based on a partitioning of the dual-wgighted resid-
Adaptive refinement ual into contributions of basis function supports and one based on the combination of ele-
Hierarchical splines ment indicators within a basis function support. The proposed goal-oriented adaptive
strategy is exemplified for the Poisson problem and a free-surface flow problem. Numerical
experiments on these problems show convergence of the adaptive method with optimal
rates. Furthermore, the corresponding goal-oriented error estimators are shown to be accu-
rate, with effectivity indices in the range of 0.7-1.1.
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1. Introduction

Since the usage of computers has become widespread in engineering design, performing analysis on geometries designed
using Computer Aided Design (CAD) software has been a common task. Isogeometric Analysis [1,2], is a framework for solv-
ing (partial) differential equations on domains generated by CAD software. It aims to eliminate or significantly reduce the
time required for preparing the designed geometry for analysis, by directly using the CAD representation of the geometry
in the analysis step. In addition to the benefits from an engineering management perspective, the exact representation of
the design geometries in the analysis step has benefits for applications where the smoothness of the boundary of the domain
plays a role, such as flow boundary layers and sliding contact of surfaces [1]. Possibility of having higher order differentiable
solutions in Isogeometric Analysis has also proven to be very desirable for many engineering applications where continuity
of the solution is a requirement due to the employed formulation, such as binary phase separation [3], gradient damage
models [4] and analysis of shell structures [5,6]. Due to its positive attributes, the interest in Isogeometric Analysis has
grown very rapidly after its initial introduction, with applications to many complicated engineering problems in material
fracture [7,8], contact mechanics [9,10], turbulence computation [11,12], free-surface flows [13], fluid-structure interaction
[14], shape optimization [15,16] and many others.

Although Isogeometric Analysis aims to overcome some of the problems often encountered in the engineering design-
through-analysis process, the fact that the objects used for geometry representation are often not adequate for attaining
a certain accuracy in analysis means that there has to be some sort of a preprocessing step. If this step is done heuristically,
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it again requires manual labor. To have a truly smooth work flow from design to analysis, adapting the initial design repre-
sentations based on an automated procedure is essential. Adaptive Isogeometric Analysis methods based on error estimators
are vital in performing this task with effectively no intervention by the engineer. Achieving this requires two issues to be
addressed: Enriching the approximation space through local refinement of the basis, and finding reliable refinement indica-
tors to assess if and where refinement should take place. The aim of this work is to address these issues by applying goal-
oriented error estimation principles to develop an adaptive Isogeometric Analysis method using hierarchical B-splines as the
local refinement technique.

In assessing CAD technologies in the context of adaptive Isogeometric Analysis, various qualities are important. Especially
locality of the refinement procedure plays an important role, along with the requirement of linear independence and com-
patibility with the state of the art CAD technologies that are in use in the industry. Hierarchical splines [17] fulfill all of these
requirements, yet they are constructed in a simple way. The hierarchical refinement method has been applied to B-splines
[17-19] and NURBS [20]. In the field of engineering design, NURBS is the industry standard technology [2,21,22]. However, B-
splines have many properties in common with NURBS and in terms of refinement techniques, virtually every concept can be
extended from B-splines to NURBS with relative ease. Therefore, hierarchical B-splines are chosen to be used in this study.

Adaptive Isogeometric Analysis with hierarchical splines has already been studied using refinement indicators based on
so called bubble functions [18] and gradients of the approximate solution [23]. In addition to these, hierarchically refined
bases are used for Galerkin discretizations for several applications [24,25]. Adaptive Isogeometric Analysis has also been
studied with T-splines [26,27], PHT-splines [28,29], LR-splines [30] and using common Finite Element Method (FEM)-type
basis functions with spline parametrizations [31,32]. Adaptivity with a method of constructing locally refined B-spline ele-
ments ensuring up to C'-conformity through a matching procedure had been investigated [33] even before the inception of
Isogeometric Analysis.

Next to the techniques of constructing locally refined approximation spaces, an integral element of adaptive refinement is
the refinement indicator that is used in deciding where and how a mesh needs to be refined. Refinement indicators are usu-
ally based on an a-posteriori estimate of the error. Among the most prominent a-posteriori error estimation methods for
Galerkin discretizations are recovery-based methods, residual based methods and goal-oriented methods. For a review of
various a-posteriori error estimation techniques, see [34,35]. The choice of goal-oriented error estimation is motivated by
its very nature, i.e. estimating the error in a quantity that is of practical relevance for the application. In mesh adaptivity
using estimators that do not take the quantity of interest into account, the refinement aims to resolve features of the solution
with equal accuracy over the whole computational domain. In many problems the complicated features of the solution on
some parts of the domain might not influence the quantity of interest. Hence, improving the approximate solution based on
goal-oriented error estimators is a very natural choice, given that there is a clear quantity of interest.

This work considers the local h-refinement of Isogeometric Analysis spaces using hierarchical B-splines, with refinement
indicators derived from goal-oriented error estimators. The main contributions of this work are a goal-oriented error estima-
tor using adapted hierarchical B-spline primal spaces that are strictly nested within the proposed dual spaces, the construc-
tion of refinement indicators that are suitable for hierarchical refinement, the numerical investigation of these indicators and
actual goal-adaptive Isogeometric discretizations of the two example problems.

The proposed methods are applied to the solution of exemplary elliptic problems of Poisson’s equation and a prototypical
free-surface flow problem. Both problems are posed on 2D domains, yet the methodology is formulated in general dimen-
sions and in an operator-independent way wherever possible. Hence, extension to other elliptic problems should require
minimal modifications to the proposed methodology. Furthermore, for problems in 3D, the benefits of local refinement in
terms of computational cost would be even more relevant.

Starting with a brief introduction to B-splines, the employed refinement technique using hierarchical B-splines is re-
viewed in Section 2 in the light of adaptive Isogeometric Analysis. The method of goal-oriented error estimation is intro-
duced in a general setting and an error estimator suitable for adaptive-refinement is proposed in Section 3. Furthermore,
in Section 3 two refinement indicators are proposed using this estimator. In Section 4, the error estimator and refinement
indicators are studied numerically and the adaptive procedure is tested for two problems. Conclusions and future recom-
mendations are presented in Section 5.

2. Hierarchical refinement of B-splines

Given a bounded open interval & c R, named the parameter domain, B-splines are piecewise polynomials Nip : Q — Rof
degree p € 7, that form a basis of a globally C*-continuous polynomial space, with —1 < k < p. The space formed by the B-
splines can be characterized by a non-decreasing sequence of knots, named the knot vector. Knots are points in Q, at which
the B-splines have reduced continuity, i.e. locations at which the basis functions are not C*-continuous. A B-spline curve
C:Q — Q is a parametrization from the parameter domain Q c R to the physical domain Q c RY, with d > 1, using
the B-spline basis. The coefficients of the B-splines B; € RY are referred to as the control points. The B-spline curve is
described as:

C(&) =D Nip(9)By,



Download English Version:

https://daneshyari.com/en/article/498095

Download Persian Version:

https://daneshyari.com/article/498095

Daneshyari.com


https://daneshyari.com/en/article/498095
https://daneshyari.com/article/498095
https://daneshyari.com

