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a b s t r a c t

Seepage through saturated porous material with an open pore system is modeled as a non-linear Stokes
flow through a rigid matrix. Based on variationally consistent homogenization, the resulting macroscale
problem becomes a Darcy-type flow. The prolongation of the Darcy flow fulfills a macrohomogeneity con-
dition, which in a Galerkin context implies a symmetric macroscale problem. The homogenization is of
1st order and periodic boundary conditions are adopted on a Representative Volume Element. A nonlin-
ear nested multiscale technique, in which the subscale problem is used as a constitutive model, is
devised. In the presented numerical investigation, the effects of varying physical parameters as well as
of the discretization are considered. In particular, it is shown that the two-scale results agree well with
those of the fully resolved fine-scale problem.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider fluid flow through a porous material
characterized by a solid skeleton that provides a substructure of a
open pore system in which the fluid is contained. The substructure
is generally very complex and has a characteristic scale much
smaller than the size of the engineering component. In practice,
it is virtually impossible to resolve the detailed flow characteristics
due to both the large difference in size of the component and its
microsctructure and the uncertainty in determining the complete
spatial variation of the subscale features. In addition, numerous
applications of engineering interest involve non-linearities on the
subscale that result in a complex behavior on the macroscale.
Examples are flow of moderate-to-high Reynolds numbers in the
pore system, non-Newtonian and multi-phase flows through por-
ous media, and the problem of truly coupled deformation and
seepage. These obstacles are commonly tackled by the use of mac-
roscopic models such as, e.g. Porous Media Theory, cf. [1]. How-
ever, non-linear phenomenological models on the macro-scale
are difficult to construct and calibrate.

The most commonly adopted macroscale model for seepage in
porous media is the so-called Darcy’s law, which in its purest form
is a linear, phenomenological, relation between the pressure gradi-
ent and the seepage velocity. This model of the permeability is
combined with the continuity equation to give a boundary value
problem in terms of the fluid pressure. The permeability model,
e.g. the constitutive relation between fluid pressure (gradient)
and seepage, can be established either by experimental measure-

ments or via analysis, i.e. homogenization. Homogenization of por-
ous media has been studied, for instance, using asymptotic
expansion of the pertinent unknown functions. See e.g. [2–5] for
periodic substructures and [6,7] for random substructures. A con-
stant macroscale permeability tensor can be established via up
scaling only for the special case of a completely linear flow on
the pertinent subscale. Examples of work with such an upscaling
include [8,9] from the field of Resin Transfer Molding and [10,11]
from the field of oil geology.

The key step in homogenization is to establish a local boundary
value problem on a Representative Volume Element (RVE) pertain-
ing to the subscale, as shown in e.g. [12–16]. In other words, the
macroscale response is directly given in terms of the solution of
a subscale problem. The size of the RVE must be large compared
to a characteristic length of the microstructure. In its simplest
form, homogenization exploits a first order expansion of a macro-
scale quantity which is imposed on the subproblem by using the
pertinent boundary conditions (commonly referred to as prolonga-
tion). Thus, in first order homogenization, the imposed macroscale
quantity varies linearly on the RVE while in second order homog-
enization the imposed macroscale quantity varies quadratically.
First and second orders of homogenization are discussed in e.g.
[17]. To completely define the prolongation, different boundary
conditions or loads on the RVE are used. It is important to note that
the linear expansion introduces an error as does the choice of
boundary conditions or loads.

The nested analysis required for the complete two-scale analy-
sis of non-linear problems is commonly denoted FE2, since the Fi-
nite Element Method (FEM) is used for the numerical solution on
both the macro- and subscales, cf. [18]. Among the vast amount
of literature on the topic, see e.g. [19–21]. A key ingredient in the
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procedure is the derivation of macro-scale tangent relations re-
quired in order to establish Newton iterations on the macroscale,
cf. [22,23].

In this work, nonlinear and incompressible Stokes’ flow through
a rigid solid skeleton is considered, and we adopt the strategy pro-
posed by Sandström and Larsson, cf. [24], for variationally consis-
tent homogenization of Stokes flow in porous media. The nested
procedure for the two-scale analysis is presented. In particular,
the local sensitivity problems pertinent to a macro-scale tangent
permeability tensor are defined. Examples are presented in 2D,
where the homogenization procedure is illustrated for both linear
and non-linear flows. As this work considers flow in a porous mate-
rial, the fluid part of the RVE is required to consist of a topologically
connected domain that allows for in- and out flow in all directions.
For a subscale representation not fulfilling these requirements, the
size of the RVE is either to small or the pore system is closed,
resulting in a non permeable material. Seepage in an open pore
system in 2D corresponds to flow around obstacles on the subscale.

The paper is organized as follows: In Section 2, the theory of the
concurrent multiscale approach is given. In Section 2.1, some basic
definitions are given, followed in Section 2.2 by the pertinent equa-
tions concerning the macroscale. In Section 2.3, the subscale prob-
lem is discussed along with the macroscale tangent problem. Two
numerical examples are shown in Section 3; one is concerned with
the comparison of linear and nonlinear subscale flows whereas the
other is concerned with a comparison of a homogenized domain
versus a fully resolved domain.

2. Concurrent multiscale method pertinent to a Stokes flow

2.1. Preliminaries

The homogenization starts out by considering a domain X con-
sisting of the complete substructure of a porous material (Fig. 1).
The pore domain XF � X is filled with a fluid. Let CF denote the part
of @XF intersecting the boundary of X (cf. Fig. 1(b)), i.e. the part of
C :¼ @X where fluid can enter and exit the domain. The boundary
CF is further split into a Dirichlet part CF

V and a Neumann part CF
P.

At the internal boundaries, i.e. Cint ¼def
@XF n C, a no-slip condition is

imposed.
The strong form of the fully resolved problem reads as follows:

�$ � r l;pð Þ ¼ 0 in XF ð1aÞ

$ � v ¼ 0 in XF ð1bÞ

t ¼def
r � n ¼ �p̂n on CF

P ð1cÞ

v ¼ v̂nn on CF
V ð1dÞ

v ¼ 0 on Cint ð1eÞ

where v is the velocity, p is the pressure, l ¼def½v � $� is the velocity
gradient, t is the Cauchy traction, n is the outward pointing normal
and r is the Cauchy stress. Furthermore, p̂ is the prescribed pressure
and v̂n is the prescribed velocity in the direction of n. Subsequently,
we shall adopt the formulation presented in [24] and introduce a
two-scale formulation.

Remark 1. The boundary conditions in Eq. (1) are chosen to be of
pressure-inflow type. This is done in order to comply with a Darcy-
type seepage on the macroscale, cf. [24].

In the following discussion, the generally nonlinear relation

rðl; pÞ ¼ rvðlÞ � pI ð2Þ

is adopted, where rv is the viscous (deviatoric) stress tensor. In the
absence of micropolar effects, which is the standard assumption
adopted subsequently, rv is symmetric and only influenced by the
symmetric part of l.

2.2. The macroscale problem

Assuming separation of scales, we consider the macroscale as
the homogeneous domain X (cf. Fig. 1). In each macroscale coordi-
nate �x we introduce a Representative Volume Element X� within
which we assume the macroscale fields to vary linearly. Hence,
we adopt first order homogenization.

We consider the macroscale problem, derived in [24], as
follows:

$ � �w �p;$�pf g ¼ 0 in X ð3aÞ

�w � n ¼ ŵ on CV ð3bÞ

�p ¼ p̂ on CP ð3cÞ

where �f g implies implicit dependence and �w is the subscale
response due to the macroscale pressure �p and defines seepage
(cf. Section 2.3) for the underlying subscale as

�w ¼def
/ vh i

�
ð4Þ

which locally is determined by the macroscale pressure �p and its
gradient. In Eq. 4, the intrinsic average over the fluid domain XF

�

was introduced as

fh i
�
¼ 1
jXF
�
j

Z
XF
�

f dV ð5Þ

for an arbitrary function f, and the porosity is defined as

/ ¼ jX
F
�
j

jX�j
ð6Þ

Note that, although CF
V � CV represents a Dirichlet part of the

boundary in the fully resolved problem, it pertains to a Neumann

Fig. 1. (a) Example of a domain X containing a porous microstructure. (b) The fully
resolved domain X where XF denotes the porespace, CF denotes the boundaries of
the obstacles and CF is the part of the bounary @X where fluid can enter and exit the
domain.
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