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Abstract

A fundamental challenge for the quantification of uncertainty in solid mechanics is understanding how microscale material
variability is manifested at the macroscale. In an era of petascale computing and future exascale computing, it is now possible
to perform direct numerical simulations (DNS) in solid mechanics where the microstructure is modeled directly in a macroscale
structure. Using this DNS capability, we investigate the macroscale response of polycrystalline microstructures and the accuracy
of homogenization theory for upscaling the microscale response. Using a massively parallel finite-element code, we perform an
ensemble of direct numerical simulations in which polycrystalline microstructures are embedded throughout a macroscale struc-
ture. The largest simulations model approximately 420 thousand grains within an I-beam. The inherently random DNS results are
compared with corresponding simulations based on the deterministic governing equations and material properties obtained from
homogenization theory. Evidence is sought for both surface effects and other higher-order effects as predicted by homogenization
theory for macroscale structures containing finite microstructures.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Engineered structures composed of metallic materials typically contain complex spatially varying polycrystalline
microstructures resulting from the solidification process as well as a series of manufacturing processes such as casting,
metal forming (e.g., stamping, forging, rolling), and fabrication (e.g., welding, machining). These manufacturing pro-
cesses not only alter the initial microstructure but also create complex spatially varying texture (nonuniformly-random
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crystal orientations) [1,2]. A key challenge in quantifying uncertainty in solid mechanics is understanding how the
process-dependent microscale material variability is manifested at the macroscale in engineering quantities of interest.

In an era of petascale computing and future exascale computing [3], it is now possible to perform direct numerical
simulations (DNS) in solid mechanics, in analogy to DNS turbulence modeling in fluid mechanics, where the mi-
crostructure is modeled directly in a macroscale structure. Using this DNS capability, we investigate the macroscale
response of polycrystalline microstructures and the accuracy of homogenization theory for upscaling the microscale
response. We perform an ensemble of 100 direct numerical simulations in which polycrystalline microstructures are
embedded throughout a macroscale structure. The microstructural embedding is accomplished through the use of a
voxelation approach and a highly refined finite-element mesh of the macroscale structure with element sizes several
times smaller than the grain size. Each finite element is assigned the properties of the grain containing the centroid
of the hexahedral element. This approach to microstructural embedding is simple and robust, unlike an explicit mi-
crostructural meshing approach in which degenerate elements are invariably created making it difficult to simulate
many realizations of the microstructure [4–8]. In this work, we are less interested in detailed stresses near the grain
boundaries, but rather with the stress fluctuations above the grain scale.

Depending upon the relative size of the microstructure (e.g., grain size) and the macroscale structural feature
(e.g., fillet radius, hole radius, section thickness), the local stress and strain fields may violate the assumption of scale
separation, a key assumption in homogenization theory [9]. As noted by Mindlin [10]:

“Higher-order effects can be expected to come into play in linear-elastic solids when the representative length
scale of the deformation field becomes comparable to a micro-structural length scale.”

Homogenization theory, at least for periodic media, predicts the existence of higher-order gradient effects in both the
governing field equations and constitutive relations whenever the microstructure is finite [9,11–13]. For an infinitesi-
mally small microstructure (first-order homogenization theory), these higher-order effects vanish. Also, homogeniza-
tion theory predicts the existence of a surface effect, or boundary layer, due to the difference in material confinement at
the surface as compared to the interior [14–16]. This boundary layer arises due to the break in the periodicity assump-
tion at the surface and due to the satisfaction of displacement or traction boundary conditions using the homogenized
material properties. For an infinitesimally small microstructure, the thickness of this boundary layer vanishes. Addi-
tionally, Beran and McCoy [17] and Drugan and Willis [18] have shown that the governing field equations for the
ensemble-averaged stress field are nonlocal with the extent of nonlocality governed by the microstructural correlation
length. When the correlation length is infinitesimally small, the governing field equations for the ensemble-averaged
stress field become local in character, and the ensemble-averaged stress field equals the stress field resulting from the
first-order homogenized field equations. Using the ensemble of DNS results, we search for evidence of these effects.

The example macroscale structure is an I-beam with holes in the web region and fillets connecting the web and
flange. The I-beam is quasi-statically loaded in a torsional mode to create stress gradients throughout the structure
along with active stress concentrations in the web region. The example material is stainless steel 304L which possesses
an austenitic (FCC) microstructure. For this material, each grain possesses a relatively large elastic anisotropy ratio,
making it a seemingly ideal material to display higher-order effects. The microstructure is idealized as a Voronoi
tessellation seeded through a maximal Poisson disk sampling process. This seeding process is also referred to as
random close-packing [19]. The seeding process and subsequent Voronoi tessellation results in an equiaxed grain
structure. The crystal orientation of each grain is assumed to be uniformly random (no texture) and uncorrelated
with neighboring grains. This microstructure is in stark contrast to a composite material containing a periodic
microstructure with perfect correlation between periodic cells. For the periodic case, higher-order homogenization
effects are known to exist [11–13].

In order to explore the effect of a finite grain size and the assumption of scale separation in the homogenized so-
lution, two ratios of web-thickness to grain size are studied: four and eight. For the case of four grains through the
web-thickness, each realization of the I-beam contains approximately 60 thousand grains. For the case of eight grains
through the web-thickness, each realization of the I-beam contains approximately 420 thousand grains. While only
the ratio of grain size to structural size is important for the linear elastic case studied here, we note that for grain sizes
on the order of 100 µm, there are approximately 1000 grains per cubic millimeter and 1 million grains per cubic cen-
timeter. Thus, the number of grains considered in this work is still relatively small for structures consisting of many
cubic centimeters of material or relatively small grains sizes. Expected future advances in computer resources will
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