Accepted Manuscript

Interfacial tension of reactive, liquid interfaces and its consequences

Anaïs Giustiniani, Wiebke Drenckhan, Christophe Poulard

PII: S0001-8686(17)30226-9 DOI: doi:10.1016/j.cis.2017.07.017

Reference: CIS 1802

To appear in: Advances in Colloid and Interface Science

Received date: 1 May 2017 Revised date: 14 July 2017 Accepted date: 14 July 2017

Please cite this article as: Giustiniani Anaïs, Drenckhan Wiebke, Poulard Christophe, Interfacial tension of reactive, liquid interfaces and its consequences, *Advances in Colloid and Interface Science* (2017), doi:10.1016/j.cis.2017.07.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Interfacial tension of reactive, liquid interfaces and its consequences

Anaïs Giustiniani, Wiebke Drenckhan and Christophe Poulard

Abstract

Dispersions of immiscible liquids, such as emulsions and polymer blends, are at the core of many industrial applications which makes the understanding of their properties (morphology, stability, etc.) of great interest. A wide range of these properties depend on interfacial phenomena, whose understanding is therefore of particular importance. The behaviour of interfacial tension in emulsions and polymer blends is well-understood -both theoretically and experimentally -in the case of non-reactive stabilization processes using pre-made surfactants. However, this description of the interfacial tension behaviour in reactive systems, where the stabilizing agents are created *in-situ* (and which is more efficient as a stabilization route for many systems), does not yet find a consensus amongst the community. In this review, we compare the different theories which have been developed for non-reactive and for reactive systems, and we discuss their ability to capture the behaviour found experimentally. Finally, we address the consequences of the reactive stabilization process both on the global emulsions or polymer blend morphologies and at the interfacial scale.

Contents

1	Int	roduction	2
2	Non-reactive interfaces		3
	2.1	Interfacial tension between fluids	3
		2.1.1 Microscopic origin	3
		2.1.2 Thermodynamic definition	3
	2.2	Surface active agents	4
	2.3	Evolution of interfacial tension in the presence of surface active agents	4
		2.3.1 Equilibrium interfacial tension and CMC	6
		2.3.2 Kinetic description	6
	2.4	Application to stabilization processes	7
3	Evo	plution of interfacial tension at reactive interfaces	8
	3.1	Methods of reactive compatibilization	ç
	3.2	Equilibrium interfacial tension	
	3.3	Kinetics of evolution of interfacial tension	
		3.3.1 Diffusion-controlled interfaces	11
		3.3.2 Reaction-limited systems	12
4	Coı	nsequences of the reactive stabilization	15
		Dispersion morphology: influence on the drop sizes	15

Download English Version:

https://daneshyari.com/en/article/4981402

Download Persian Version:

https://daneshyari.com/article/4981402

<u>Daneshyari.com</u>