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a b s t r a c t

Isogeometric collocation (IGA-C) method has shown its superior behavior over Galerkin
method in terms of accuracy-to-computational-time ratio and other aspects. However, rel-
atively little has been published about numerical analysis of the IGA-C method. This paper
develops theoretical results on consistency and convergence of the IGA-C method to a gen-
eric boundary (initial) problem. It shows that the IGA-C method is convergent when differ-
ential operator of the boundary (initial) problem is stable or strongly monotone. Finally, we
show some concrete examples whose differential operators are strongly monotone, and the
IGA-C method is convergent. Moreover, 2D and 3D numerical examples are presented.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finite Element Analysis (FEA) gains widespread applications in physical simulation. However, while classical FEA meth-
ods are based on linear basis functions, CAD models are usually represented by NURBS with non-linear NURBS basis func-
tions. When performing CAD model simulation, the NURBS-based CAD model should be transformed into linear mesh
representation. As we all know, the operation of mesh transformation is very tedious, and it has become the most time-con-
sumed task in the whole FEA procedure. Therefore, isogeometric analysis (IGA) is proposed by Hughes et. al. [1] to avoid the
mesh transformation and to advance the seamless integration of CAD and CAE.

Since the IGA method is based on non-linear NURBS basis functions, it can deal with NURBS-based CAD models directly.
And the IGA method can not only save lots of computation, but also greatly improve the computational precision. In addition,
due to the knot insertion property of NURBS, the shape of CAD model can be exactly held in the refinement procedure [1].
Owning so many merits, the IGA method has been successfully applied in kinds of simulation problems, such as elasticity
[2,3], structure [4–6], and fluid [7–9], etc.

For now, some work focuses on computational aspect of the IGA method and improves the accuracy and efficiency by
using reparameterization and refinement, etc. [10–15]. Collocation method is a simple and efficient numerical method for
solving differential equation, which can generate a numerical solution satisfying the differential equation at a set of discrete
points, called collocation points [16]. If an unknown NURBS function is employed to approximate the analytical solution of a
differential equation and its order is high enough, the collocation method can be applied to the strong form of the differential
equation. Based on this fact, Auricchio et al. proposed the well-known isogeometric collocation (IGA-C) method [17]. For a
boundary/initial problem with differential operator D, we denote by T and Tr the analytic and numerical solutions,
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respectively, and n the number of the unknown coefficients of the NURBS function Tr . The IGA-C method first samples n
values DTrðgiÞ; i ¼ 1;2; . . . ;n, and then generates a system of linear equations by DTr interpolating these n values, i.e.,
DTðgiÞ ¼ DTrðgiÞ; i ¼ 1;2; . . . ;n. The unknown coefficients of Tr can be determined by solving the linear system.

The IGA-C method has been extended to multi-patch NURBS configurations, various boundary and patch interface
conditions, and explicit dynamic analysis [18]. Moreover, the IGA-C method has also been successfully employed in solving
Timoshenko beam problem [19] and spatial Timoshenko rod problem [20], showing that mixed collocation schemes are
locking-free independently of the choice of the polynomial degrees for the unknown fields. A comprehensive study on
the IGA-C method reveals its superior behavior over Galerkin method in terms of accuracy-to-computational-time ratio
[21]. Meanwhile, adaptive IGA-C methods are also developed and analyzed based on local hierarchical refinement of NURBS
[21].

Unfortunately, a thorough numerical analysis of the IGA-C method is far from being established. Till now, all the analysis
of the IGA-C method is only available for the one-dimensional case [17]. And the convergence results for 2D and 3D NURBS
discretizations are available only based on numerical experiments [17,18].

In this paper, we present some theoretical consistency and convergence results of the IGA-C method for a generic differ-
ential operator. We first prove the consistency property of the IGA-C method. That is, for a PDE with the differential operator
D, T is its analytic solution, and a NURBS function Tr is the numerical solution.DTr will tend to DT , when each knot interval of
Tr tends to a point. Then a theoretical convergence result is presented, and we prove that, if D is a stable or strongly mono-
tone operator, the numerical solution Tr will tend to the analytic solution T when each knot interval of Tr tends to a point.
Finally, we give some concrete examples where the differential operators are strongly monotone, and then the IGA-C method
is convergent. It should be pointed out that, while the rate of convergence of the IGA-C method for one-dimensional prob-
lems is developed in [17], we just show the convergence of the IGA-C method for higher dimensional problems with stable or
strongly monotone operator in this paper. Especially, when the differential operator is a stable or strongly monotone oper-
ator with polynomial coefficients, we present an error bound for the numerical solution generated by the IGA-C method.

The rest of this paper is laid out as follows. The generic formula of the IGA-C method is presented in Section 2. In Section 3,
we study the knot vector of the derivative of arbitrary order of a NURBS function Tr , and prove that Tr and DTr have the same
breakpoint sequence and knot intervals. In Section 4, the theoretical consistency and convergence results of the IGA-C meth-
od are developed, and some concrete examples and numerical examples are presented. Finally, we conclude this paper in
Section 5.

2. Generic formulation of the IGA-C method

A boundary value problem is expressed as

DT ¼ f ; in X � Rd;

GT ¼ g; on @X;

(
ð1Þ

where X � Rd is a physical domain of d dimension, D is a bounded differential operator on the physical domain, GT ¼ g is a
boundary condition, and f : X! R, g : @X! R are given functions. Suppose k is the maximum order of derivatives appearing
in the operator D : V !W , where V and W are two Hilbert spaces, and the analytical solution T 2 CmðXÞ; m P k.

In the isogeometric analysis, the physical domain X is represented by a NURBS mapping:

F : X0 ! X; ð2Þ

where X0 is a parametric domain. Replacing the control points of FðX0Þ by unknown control coefficients, we obtain the rep-
resentation of numerical solution Tr , where Tr 2 CkðXÞ.

Suppose there are n unknown control coefficients in the representation of Tr . We first sample n1 points inside X0, which
correspond to n1 values inside X, i.e., gi ¼ FðhiÞ; i ¼ 1;2; . . . ;n1. Next, we sample n2 points on @X0, which correspond to n2

values on @X, i.e., gi ¼ FðhiÞ; i ¼ n1 þ 1;n1 þ 2; . . . ;n1 þ n2. The total number of theses points, called collocation points, should
be equal to the number of the unknown coefficients of Tr , i.e., n ¼ n1 þ n2.

Inserting these collocation points into the boundary value problem (1) yields a system of equations with n equations and
n unknowns, i.e.,

DTrðgiÞ ¼ f ðgiÞ; i ¼ 1;2; . . . n1;

GTrðgiÞ ¼ gðgiÞ; i ¼ n1 þ 1;n1 þ 2; . . . ; n:

�
ð3Þ

Arranging the unknowns of Tr into an n-dimensional column vector, i.e., X ¼ ½x1 x2 � � � xn�T, the system of Eq. (3) can be
represented in matrix form as

AX ¼ b:

If the collocation points are so selected that the collocation matrix A is non-singular, the unknown coefficients X can be
determined by solving the above mentioned system of linear equations.
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