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a b s t r a c t

A new stabilization procedure is presented. It is based on a simulation of the interaction between the
coarse and fine parts of a Shishkin mesh, but can be applied on coarse and irregular meshes and on
domains with nontrivial geometries. The technique, which does not require adjusting any parameter,
can be applied to different stabilized and non stabilized methods. Numerical experiments show it to
obtain oscillation-free approximations on problems with boundary and internal layers, on uniform and
nonuniform meshes and on domains with curved boundaries.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The numerical solution of convection–diffusion problems
when convection dominates is, despite more than 30 years of re-
search, a challenging problem nowadays. Standard finite-element
or finite-difference methods typically suffer from unphysical or
spurious oscillations unless meshes are taken so fine that are use-
less for all practical purposes. The reason is the presence of layers
or thin regions where solutions change fast. Modification of
standard methods, known as stabilized methods have been pro-
posed in the literature, from upwind methods 35 years ago [44],
to strongly-consistent stabilized methods like the streamline up-
wind/Petrov–Galerkin (SUPG) method [7], also known as the
streamline diffusion finite element method (SDFEM), or the
Galerkin least-squares (GALS) method [23]. More recently, local
projection stabilization (LPS) methods, [4,6,17], continuous interior
penalty (CIP) methods [8], or discontinuous Galerkin (DG) methods
[22,34] have been introduced, to cite a few of the many techniques
proposed (see [35,37] for a survey of methods). It must be noticed,
however, that computational studies (see e.g., [2,25]) find it hard to
put a particular method above the others. It must be also men-
tioned that most of these methods depend on at least one param-
eter about which there is no unanimous agreement on its optimal
choice in practical problems [26].

A different approach is to use layer-adapted meshes. Among
these we cite Shishkin meshes (described below) [30,36], which
have received considerable attention in recent years [13–

15,27,31,32,38,42,46]. However, it is generally acknowledged that
the main drawback of Shishkin meshes is the difficulty to design
them on domains with nontrivial geometries, although some
works overcoming this difficulty can be found in the literature
[45,27].

The method we propose, however, does not suffer from the
above indicated drawbacks: It does not depend on parameters
and, although it is based on the idea of simulating a Shishkin mesh,
the experiments we present show it produces excellent results on
domains with nontrivial geometries.

We consider the problem

� eDuþ b � ruþ cu ¼ f ; in X; ð1Þ

u ¼ g1; in @XD;
@u
@n
¼ g2; in @XN : ð2Þ

Here, X is a bounded domain in Rd, d ¼ 1;2;3, its boundary @X
being the disjoint union of CD and CN , b and c are given functions
and e > 0 is a constant diffusion coefficient. We assume that
C� � @XD, C� being the inflow boundary of X � Rd, i.e., the set of
points x 2 @X such that bðxÞ � nðxÞ < 0.

It is well-known if e� supfjbðxÞjjx 2 Xg (j � j being the
euclidean norm) boundary layers are likely to develop along
@X n C�, although they have different structure on C0 ¼
fx 2 @XjbðxÞ � nðxÞ ¼ 0g and Cþ ¼ fx 2 @XjbðxÞ � nðxÞ > 0g. As al-
ready mentioned, these boundary layers, when present, are
responsible of the spurious oscillations that pollute the numerical
approximations obtained with standard methods unless extremely
fine meshes are used. For uniform meshes, oscillations typically
disappear when the mesh Péclet number
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Pe ¼
kbkL1ðXÞ2 h

2e
(h being the mesh size) is of the order of 1.

Let us briefly describe now the idea of the method we propose
in the following simple problem:

LðuÞ � �eu00ðxÞ þ bðxÞu0ðxÞ þ cðxÞ ¼ f ðxÞ; 0 < x < 1; ð3Þ
uð0Þ ¼ uð1Þ ¼ 0: ð4Þ

In (3) we assume that b, c and f are sufficiently smooth functions,
and that

0 < b < min
x2½0;1�

bðxÞ; 0 6 min
x2½0;1�

cðxÞ: ð5Þ

The standard Galerkin linear finite-element method for (3) and (4)
on a partition or mesh 0 ¼ x0 < x1 < � � � < xJ ¼ 1 of ½0;1� obtains a
continuous piecewise linear approximation uhðxÞ to u. As it is cus-
tomary, h denotes the mesh diameter, h ¼max16j6Jhj, where
hj ¼ xj � xj�1, for j ¼ 1; . . . ; J. The approximation can be expressed
as UðxÞ ¼ u1u1ðxÞ þ � � � þ uJ�1uJ�1ðxÞ, where the ujðxÞ are the basis
or hat (piecewise linear) functions taking value 1 at the node xj

and 0 in the rest of the nodes of the partition (thus, UðxjÞ ¼ uj).
The values uj, j ¼ 1; . . . ; J � 1, are obtained by solving the linear sys-
tem of equations

aðuh;uiÞ ¼ ðf ;uiÞ; i ¼ 1; . . . ; J � 1; ð6Þ

where, a is the bilinear form associated with (3), which is given by

aðv;wÞ ¼ eðv 0;w0Þ þ ðbv 0 þ c;wÞ;

ð�; �Þ being the standard inner product in L2ð0;1Þ,

ðf ; gÞ ¼
Z 1

0
f ðxÞgðxÞdx:

The Shishkin mesh with J ¼ 2N nodes is composed of two uni-
form meshes with N subintervals on each side of the transition
point xN ¼ 1� r, where

r ¼ min
1
2
;
2
b
e log N

� �
;

for an adequate constant b, that is, xj ¼ jð1� rÞ=N, for j ¼ 0; . . . ;N,
and xNþj ¼ xN þ jr=N, for j ¼ 1; . . . ;N. Let us consider the coarse
and fine grid parts of the Galerkin approximation given by

UcðxÞ ¼ u1u1ðxÞ þ � � � þ uN�1uN�1ðxÞ;
Uf ðxÞ ¼ uNþ1uNþ1ðxÞ þ � � � þ u2N�1u2N�1ðxÞ;

so that Uc þ uNuN þ Uf is the Galerkin approximation on the Shish-
kin mesh. Since for i ¼ 1; . . . ; J � 1, the support of the basis function
ui is ½xi�1; xiþ1�, we have aðUc;uNþjÞ ¼ 0 and aðUf ;ujÞ ¼ 0, for
j ¼ 1; . . . ;N � 1. Consequently the system (6) on the Shishkin mesh
can be rewritten as

aðUc;uiÞ;¼ ðf ;uiÞ; i ¼ 1; . . . ;N � 2; ð7Þ
aðUc;uiÞ þ uNaðuN;uiÞ ¼ ðf ;uiÞ; i ¼ N � 1; ð8Þ
aðUc;uNÞ þ uNaðuN;uNÞ þ aðUf ;uNÞ ¼ ðf ;uNÞ; ð9Þ
uNaðuN;uiÞ þ aðUf ;uiÞ ¼ ðf ;uiÞ; i ¼ N þ 1; . . . ;2N � 1: ð10Þ

We notice that were it not for the presence of the uNaðuN;uiÞ in
(8), the system (7) and (8) would be the equations
aðU;uiÞ ¼ ðf ;uiÞ; i ¼ 1; . . . ;N � 1; ð11Þ

of the Galerkin approximation U ¼ U1u1 þ � � � þ UN�1uN�1 for the
problem
� eu00ðxÞ þ bðxÞu0ðxÞ þ cðxÞ ¼ f ðxÞ; 0 < x < 1� r; ð12Þ
uð0Þ ¼ uð1� rÞ ¼ 0: ð13Þ

The Galerkin approximation U for this problem, unless eN > 1=2, is
likely to have spurious oscillations of large amplitude as we show in

Fig. 1 for e ¼ 10�8, r ¼ 4e logðJÞ, bðxÞ ¼ f ðxÞ ¼ 1, c ¼ 0 and N ¼ 9. It
is however the presence of uNaðuN;uiÞ in Eq. (8) that suppresses the
oscillations, as we can see in Fig. 1, where the component Uc of the
Galerkin approximation on a Shishkin grid with J ¼ 2N ¼ 18 is also
shown (discontinuous line) together with the true solution at the
nodes of the coarse part of the mesh.

It is remarkable that just by adding the value

a� ¼ uNaðuN�1;uNÞ ð14Þ

to the last equation of the Galerkin method for (12) and (13) we get
the oscillation-free approximation Uc . Obviously, in order to have
the value of a� we have to solve the whole system (7)–(10). In the
present paper, we introduce a technique to approximate a� without
the need to compute the whole approximation on the Shishkin grid.
In Fig. 1, the approximation computed with the estimated a� is
indistinguishable from Uc . Numerical experiments in the present
paper show that, in two-dimensional problems, the oscillation-free
approximation on a coarse mesh can be obtained by this technique
at half the computational cost of a Shishkin grid, and a more sub-
stantial gain can be expected in three-dimensional problems.

Furthermore, this technique can be extended when the grid is
no part of any Shishkin grid, while, at the same time, managing
to get rid of the spurious oscillations. This allows to obtain accurate
approximations on domains with non trivial boundaries, where
Shishkin meshes may be difficult to construct. In spite of this, we
call the new technique Shishkin mesh simulation (SMS), since it
was derived, as described above, in an attempt to simulate Shish-
kin grids.

We must mention, however, that in the present paper we only
consider the case of dominant convection, both in the analysis
and in the numerical experiments. The question of how to modify
the method (if necessary) when the mesh Péclet number Pe tends
to one will be addressed elsewhere.

It is well-known that the Galerkin method is a far from ideal
method in convection–diffusion problems. Let us also notice that
despite the good properties of stabilized methods developed in re-
cent years, the SUPG method is still considered the standard ap-
proach [26]. For this reason, in the numerical experiments
presented below, we compare the new method with the SUPG
method.
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Fig. 1. Galerkin approximation on a uniform mesh with N ¼ 9 (continuous line) to
the solution of (12) and (13) with e ¼ 10�8, r ¼ 4e logð2 � NÞ, b ¼ f ¼ 1, and c ¼ 0.
The Uc part of the Galerkin approximation on a Shishkin mesh with J ¼ 18 (broken
line) for same e and f. Circles are the values of the true solution on the nodes.
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