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a b s t r a c t

A general numerical model has been developed for fluid flow in a progressively fracturing porous med-
ium subject to large deformations. The fluid flow away from the crack is modelled in a standard manner
using Darcy’s relation. In the discontinuity a similar relation is assumed for the fluid flow, but with a dif-
ferent permeability to take into account the higher porosity within the crack due to progressive damage
evolution. The crack is described in a discrete manner by exploiting the partition-of-unity property of
finite element shape functions. The nucleation and the opening of micro-cracks are modelled by a trac-
tion-separation relation. A heuristic approach is adopted to model the orientation of the cracks at the
interfaces in the deformed configuration. A two-field formulation is derived, with the solid and the fluid
velocities as unknowns. The weak formulation is obtained, assuming a Total Lagrangian formulation. This
naturally leads to a set of coupled equations for the continuous and for the discontinuous parts of the
mixture. The resulting discrete equations are nonlinear due to the cohesive-crack model, the large-defor-
mation kinematic relations, and the coupling terms between the fine scale and the coarse scale. The capa-
bilities of the model are shown at the hand of some example problems.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the work of Terzaghi [1] and Biot [2], fluid flow in a
deforming porous medium has received considerable attention. In-
deed, the subject is crucial for the understanding and the predic-
tion of the physical behaviour of many systems of interest.
Initially, research has focused on petroleum and geotechnical engi-
neering [3]. More recently, the techniques have also been applied
to biology and medical sciences. Studies have been carried out to
understand the complexity of the structure as well as the physical
processes in human soft tissues, e.g. blood perfusion [4], skin and
subcutis [5] and cartilageous tissues including intervertebral discs
[6].

Recently, a two-scale numerical model has been constructed for
crack propagation in a deforming fluid-saturated porous medium
subject to small strains [7–10]. The saturated porous material
was modelled as a two-phase mixture, composed of a deforming
solid skeleton and an interstitial fluid. Crack growth was initially
modelled using linear-elastic fracture mechanics, but later also
via a cohesive-zone approach, where the process zone is lumped
into a single plane ahead of the crack tip. The opening of this plane

is governed by a traction-separation relation. At the fine scale the
flow in the crack was modelled as a viscous fluid using Stokes’
equations for the open cracks in the linear-elastic fracture mechan-
ics approach, while for the modelling with cohesive cracks the fluid
flow in the crack was assumed to obey Darcy’s law, but with a dif-
ferent, and evolving permeability due to the higher porosity inside
the crack. Since the cross-sectional dimensions of the cavity
formed by the crack are assumed to be small compared to its
length, the flow equations can be averaged over the cross section
of the cavity. The resulting equations provide the momentum
and mass couplings to the standard equations for a porous mate-
rial, which hold on the coarse scale. In order to allow for the nucle-
ation and the propagation of cracks in arbitrary directions,
irrespective of the structure of the underlying finite element mesh,
the model exploits the partition-of-unity property of finite element
shape functions [11], see also [12–15].

Soft tissues can experience large deformations. The small strain
assumption then no longer holds. In this contribution, we therefore
make the extension to a finite strain framework, introducing non-
linear kinematics in combination with a hyperelastic material re-
sponse. Thus, we follow the motion of the solid skeleton using a
Lagrangian description and express the momentum balance equa-
tions using this description. Subsequently, we write the mass
balance equations identifying the spatial point as the instanta-
neous material point occupied by the solid phase. The resulting
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system of equations is nonlinear due to the cohesive-crack model,
the geometrically nonlinear effect and presence of the coupling
terms. A linearisation is applied to the system for use within
a Newton–Raphson iterative procedure, and a weighted-time
scheme is applied to discretise the system in the time domain.

The paper is ordered as follows. In the next section, the nonlin-
ear kinematic relations for a fracturing porous material are elabo-
rated. These relations are used to construct the linear momentum
and mass balance relations in Section 3, complemented by consti-
tutive relations for the mixture in the bulk as well as at the inter-
face in Section 4. The spatial discretisation, which exploits the
partition-of-unity property, is presented in Section 5, followed by
implementation aspects in Section 6. The performance of the mod-
el is assessed in Section 7, followed by some concluding remarks.

2. Nonlinear kinematics

Fig. 1(a) shows a body crossed by a discontinuity Cd;0 in the ref-
erence or undeformed configuration. The body is divided by the
discontinuity into two sub-domains, Xþ0 and X�0 (X0 ¼ Xþ0 [X�0 ).
A vector nCd;0

is defined normal to the discontinuity surface Cd;0

in the direction of Xþ0 . The total displacement field of the solid skel-
eton u at any time t consists of a continuous regular displacement
field �u and a continuous additional displacement field û:

uðX; tÞ ¼ �uðX; tÞ þ HCd ;0ûðX; tÞ; ð1Þ

where X is the position vector of a material point in the undeformed
configuration and HCd ;0 is the Heaviside step function centered at
the discontinuity and is defined as:

HCd ;0ðXÞ ¼
1; X 2 Xþ0 ;

0; X 2 X�0 :

(
ð2Þ

From the displacement decomposition in (1), the deformation
map UðX; tÞ for a body crossed by a discontinuity can be written as:

UðX; tÞ :¼ xðX; tÞ ¼ Xþ �uðX; tÞ þ HCd;0
ûðX; tÞ; ð3Þ

where x is the position vector of a material point in the deformed
configuration. The velocity of the solid constituent is defined as

_x ¼ D x
Dt
¼ vs; ð4Þ

where the superimposed dot indicates the material time derivative
which follows the motion of the solid. The deformation gradient F is
obtained by taking the gradient of (3) with respect to the unde-
formed configuration:

F ¼ �FþHCd;0
F̂; X 2 X0 n Cd;0; ð5Þ

with �F ¼ Iþr0 �u and F̂ ¼ r0û.

The volumetric change of the solid between the undeformed
and deformed configuration is represented as J ¼ detðFÞ. Differen-
tiation with respect to time yields

_J ¼ Jrvs: ð6Þ

The magnitude of the displacement jump ud at the discontinu-
ity Cd;0 is represented as the magnitude of the additional displace-
ment field û;

udðX; tÞ ¼ ûðX; tÞ; X 2 Cd;0: ð7Þ

With aid of Nanson’s relation for the normal n to a surface C

n ¼ J F-Tn0
dC0

dC
; ð8Þ

the expressions for the normals at the X�0 side and at the Xþ0 side of
the interface can be derived as

n�Cd
¼ detð�FÞ�F-Tnd;0

dCd;0

dC�d
ð9Þ

nþCd
¼ detð�Fþ F̂Þ �Fþ F̂

� �-T
nd;0

dCd;0

dCþd
; ð10Þ

respectively. Fig. 1(b) illustrates the normal vector at the disconti-
nuities. Considering the fact that the magnitude of the opening ud

will be relatively small, it is assumed that an average normal can
be defined for use within a cohesive-zone model [14]:

n�Cd
¼ det �Fþ 1

2
F̂

� �
�Fþ 1

2
F̂

� ��1

nd;0
dCd;0

dC�d
: ð11Þ

The vector n�Cd
is used to define the traction vector at the ‘aver-

age’ discontinuity plane C�d, and to resolve a displacement jump
into normal and tangential components. To simplify the notation,
nCd

will henceforth substitute n�Cd
.

3. Balance equations

We consider a mixture that consists of a solid skeleton with an
interstitial fluid. There is no mass transfer between the constitu-
ents. The inertia effects, convective term and gravity acceleration
are neglected and the process is isothermal. With these assump-
tions we write the balance of linear momentum for the solid and
the fluid phases as:

r � rp þ p̂p ¼ 0; ð12Þ

where rp denotes the stress tensor of constituent p. In the remain-
der we will adopt p ¼ s; f, with s and f denoting the solid and fluid
phases, respectively. Furthermore, p̂p is the source of momentum
for constituent p from the other constituent, which takes into ac-
count the local drag interaction between solid and fluid. Consider-
ing that the latter source terms satisfy the momentum production
constraintX
p¼s;f

p̂p ¼ 0 ð13Þ

and adding the momentum balances for the solid and the fluid parts
of the mixture, we obtain the balance of linear momentum for the
mixture in the current, or deformed, configuration as:

r � r ¼ 0; ð14Þ

where the stress is composed of a solid and a fluid part:

r ¼ rs þ rf : ð15Þ

Now, defining the corresponding first Piola–Kirchhoff partial
stress tensor as Pp ¼ J F�1 � rp, the total first Piola–Kirchhoff stress
tensor is given by

(a) (b)

Fig. 1. (a) Schematic representation of body X0 crossed by a material discontinuity
Cd;0 in the undeformed configuration. (b) Discontinuity interfaces Cþd and C�d and
their normal vector representation in the deformed configuration.
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